Math, asked by cpkumar27, 8 months ago


if  \: tan  \: \gamma  =  \: 3 \div 4 \: then \: 1 -  \cos \: gamma  \div 1 +  \cos \: gamma
a) 9
b) 1/9
c) 4
d) 1/4 ​

Answers

Answered by Darkrai14
1

Given:-

\tan \gamma = \dfrac{3}{4}

To find:-

\dfrac{1-\cos \gamma}{1+\cos \gamma} \qquad ...[1]

Solution:-

We know that,

\tan\rm \gamma = \dfrac{Opposite \ side}{ Adjacent \ side}

Hence,

\tan \rm\gamma = \dfrac{Opposite \ side}{ Adjacent \ side} = \dfrac{3}{4}

Opposite side = 3 , Adjacent side = 4

Then hypotenuse

(3)² + (4)² = (Hypo)²

→ 9+16 = ( Hypo )²

→ 25 = ( Hypo)²

→ √25 = Hypotenuse

→ 5 = Hypotenuse

We know that

\cos\rm \gamma = \dfrac{Adjacent \ Side}{Hypotenuse}

Hence,

\cos\rm \gamma = \dfrac{Adjacent \ Side}{Hypotenuse}= \dfrac{4}{5}

Substitute the value of cos γ in [1]

\dashrightarrow\dfrac{1-\cos \gamma}{1+\cos \gamma}

\dashrightarrow\dfrac{1-\frac{4}{5}}{1+\frac{4}{5}}

\dashrightarrow\dfrac{\frac{5-4}{5}}{\frac{5+4}{5}}

\displaystyle\dashrightarrow\dfrac{\frac{1}{5}}{\frac{9}{5}}

\dashrightarrow\dfrac{1}{5} \times \dfrac{5}{9}

\bf\dashrightarrow\dfrac{1}{9}

Hence, option (b) is correct!

Similar questions