Math, asked by MonsieurBrainly, 1 year ago


if \:  \tan\theta +  \cot \theta = 2 \\ then  \:  \:  { \tan}^{2} \theta +  { \cot }^{2}  \theta = \:  ? \:  \\   \\  a) \: 0 \:  \\ b) \: 1 \\ c) \: 2 \:   \\  d) \: 3


MonsieurBrainly: no comments as answer
MonsieurBrainly: No comment as answer
elizaknile: okay.......but friend why you have deleted my question........it was veryy important to know mee.......

Answers

Answered by A1111
3
We are given :-

 \tan( \theta)  \:  +  \:  \cot( \theta)  \:  =  \: 2


We know that :-

 =  >  \tan ^{2} ( \theta)   \:  +  \:  \cot^{2} (\theta)  \:  =  (\:  \tan( \theta)  \:  +  \:  \cot( \theta) ) {}^{2}  \:  -  \: 2 \tan( \theta)  \cot( \theta)  \\   = 2 ^{2}   \:  -  \: 2  \:  =  \: 2

Hope this helps.....
Answered by siddhartharao77
6

Given : tan Ф + cot Ф = 2

⇒  tan Ф + (1/tan Ф) = 2

⇒ tan^2 Ф + 1 = 2 tan Ф

⇒ tan^2 Ф - 2 tan Ф + 1 = 0

⇒ tan^2 Ф - 2(tanФ)(1) + (1)^2 = 0

We know that a^2 - 2ab + b^2 = (a - b)^2

⇒ (tan Ф - 1)^2 = 0

⇒ tan Ф = 1.


Now,

⇒ tan^2 Ф + cot^2 Ф

⇒ (1) + (1/1)

⇒ 1 + 1

⇒ 2.


Therefore, the answer is 2 - Option (C).


Hope this helps!

Similar questions