Math, asked by bhartirajkumar4050, 4 months ago


if \: \tan \theta = \frac{a}{b} \\   \\  \: find \: the \: value \: of \:  \frac{ \cos \theta +  \sin \theta}{ \cos \theta -  \sin \theta }

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{tan\theta \: = \dfrac{a}{b} }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{\dfrac{cos\theta \: + sin\theta \:}{cos\theta \: - sin\theta \:} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:Formula  \: Used - \begin{cases} &\sf{tan\theta \: = \dfrac{sin\theta \:}{cos\theta \:} }  \end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{cos\theta \: + sin\theta \:}{cos\theta \: - sin\theta \:}

 \sf \: Divide \:  numerator \:  and \:  denominator \:  by \: cos\theta \:

\rm :\longmapsto\: =  \: \dfrac{\dfrac{cos\theta \:}{cos\theta \:}  + \dfrac{sin\theta \:}{cos\theta \:} }{\dfrac{cos\theta \:}{cos\theta \:}  + \dfrac{sin\theta \:}{cos\theta \:} }

\rm :\longmapsto\: =  \: \dfrac{1 + tan\theta \:}{1 - tan\theta \:}

\rm :\longmapsto\: =  \: \dfrac{1 + \dfrac{a}{b} }{1 - \dfrac{a}{b} }

\rm :\longmapsto\: =  \: \dfrac{b + a}{b - a}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions