Math, asked by shalini683, 1 year ago


if \:  \tan \: theta \:  =  \:  \sqrt{2  \:  }  - 1 \: prove \: that \:  \sin \: theta \: . \: cos \: theta \: \frac{1}{2 \sqrt{2} }
Please explain

Please answer it correctly

I will mark you as brainlist

Please answer it very fast

Answers

Answered by siddhartharao77
0

Answer:

(1/2√2)

Step-by-step explanation:

Given Equation is tan θ = √2 - 1.

(i)

On Squaring both sides, we get

⇒ tan²θ = (√2 - 1)²

⇒ sec² θ - 1 = 2 + 1 - 2√2

⇒ sec²θ = 2 + 1 + 1 - 2√2

⇒ sec²θ = 4 - 2√2

⇒ (1/cos²θ) = 4 - 2√2

⇒ cos²θ = (1/4 - 2√2)    

⇒ cosθ = √(1/4 - 2√2)

(ii)

tan θ = √2 - 1

⇒ (1/cot θ) = √2 - 1

⇒ cot θ = (1/√2 - 1)  

On Squaring both sides, we get

⇒ cot²θ = (1/√2 - 1)²

⇒ cosec²θ - 1 = (1/2 + 1 - 2√2)

⇒ cosec²θ = (1/3 - 2√2) + 1

⇒ cosec²θ = (1 + 3 - 2√2)/(3 - 2√2)

⇒ cosec²θ = (4 - 2√2)/(3 - 2√2)

⇒ (1/sin²θ) = (4 - 2√2)/(3 - 2√2)

⇒ sin²θ = (3 - 2√2)/(4 - 2√2)

⇒ sinθ = √(3 - 2√2)/(4 - 2√2)


LHS:

sinθ * cosθ

=\sqrt{\frac{3-2\sqrt{2}}{4-2\sqrt{2}}}*\sqrt{\frac{1}{4-2\sqrt{2}}}

=\sqrt{\frac{3-2\sqrt{2}}{4-2\sqrt{2}}*\frac{1}{4-2\sqrt{2}}}

=\sqrt{\frac{3-2\sqrt{2}}{(4-2\sqrt{2})(4-2\sqrt{2})}}

=\sqrt{\frac{3-2\sqrt{2}}{(4-2\sqrt{2})^2}}

=\sqrt{\frac{3-2\sqrt{2}}{24-16\sqrt{2}}}

=\sqrt{\frac{3-2\sqrt{2}}{8(3-2\sqrt{2})}}

=\sqrt{\frac{1}{8}}

=\boxed{\frac{1}{2\sqrt{2}}}


Hope it helps!


shalini683: RHS
siddhartharao77: 1/2root2 is RHS!
siddhartharao77: Wait!
siddhartharao77: I have already proved LHS = RHS!
Answered by Siddharta7
0

Step-by-step explanation:

The answer is explained in the attachment.


Attachments:
Similar questions