Math, asked by TheWildFantasy, 3 months ago


if \  \textless \ br /\  \textgreater \ \frac{a}{x + y } \: = \frac{b}{y + z} = \frac{c}{z - x}  \\ \  \textless \ br /\  \textgreater \ then \:  show  \: that \:  b = a + c ​

Answers

Answered by TheDiamondBoyy
9

Answer:-

Given:-

\leadsto \sf \dfrac{a}{x + y} =\: \dfrac{b}{y + z} =\: \dfrac{c}{z - x}

Prove That :-

\leadsto \sf b =\: a + c

Solution:-

 \implies \sf \dfrac{a}{x + y} =\: \dfrac{b}{y + z} =\: \dfrac{c}{z - x} =\: k\: [where\: k \ne 0]\\

Then, we get

\sf \dfrac{a}{x + y} =\: k

By doing cross multiplication we get,

\sf\bold{\pink{a =\: k(x + y)}}

\sf \dfrac{b}{y + z} =\: k

By doing cross multiplication we get,

\sf\bold{\pink{b =\: k(y + z)}}

And,

\sf \dfrac{c}{z - x} =\: k

By doing cross multiplication we get

\sf\bold{\pink{c =\: k(z - x)}}

Hence, we get the value of a , b and c :

→a = k(x + y)

→b = k(y + z)

→c = k(z - x)

Then,

\longmapsto \sf b =\: a + c

By putting the value of a , b and c we get,

\sf k(y + z) =\: k(x + y) + k(z - x)

\sf k(y + z) =\: k(\cancel{x} + y + z \cancel{- x})

\sf\boxed{\bold{k(y + z) =\: k(y + z)}}

\longrightarrow {\red{\bigstar}} \ {\underline{\green{\textsf{\textbf{HENCE, PROVED}}}}}

Similar questions
Math, 1 month ago