Math, asked by sajan6491, 17 days ago

If \: the \: function \\ f(x) = \begin{cases} \dfrac{ \sqrt{(1 + Px) } - \sqrt{(1 - Px)}}{ x} \: \: \: ; - 1 \leq x < 0 \\ \\ \bigg( \dfrac{2x + 1}{x - 2} \bigg) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ;0 \leq x \leq 1\end{cases}

is continuous [-1,1] the P=___

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Given that function

\rm \: f(x) = \begin{cases} \dfrac{ \sqrt{(1 + Px) } - \sqrt{(1 - Px)}}{ x} \: \: \: ; - 1 \leq x < 0 \\ \\  \dfrac{2x + 1}{x - 2}  \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ;0 \leq x \leq 1\end{cases} \\

is continuous on [ - 1, 1 ].

We know, A function f(x) is continuous at x = a, iff

\color{green}\boxed{ \rm{ \:\rm \: \displaystyle\lim_{x \to a^-}\rm f(x) = \displaystyle\lim_{x \to a^ + }\rm f(x) = f(a) \:  \: }} \\

Since, it is given that function is continuous at x = 0.

So,

\rm \: f(0) = \displaystyle\lim_{x \to 0^-}\rm f(x) \\

\rm \: \dfrac{2(0)+ 1}{0 - 2} = \displaystyle\lim_{x \to 0^-}\rm \dfrac{ \sqrt{(1 + Px) } - \sqrt{(1 - Px)}}{ x} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm \dfrac{ \sqrt{(1 + Px) } - \sqrt{(1 - Px)}}{ x}  \times  \frac{\sqrt{(1 + Px)} + \sqrt{(1 - Px)}}{\sqrt{(1 + Px)} + \sqrt{(1 - Px)}} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm  \dfrac{\bigg(\sqrt{(1 + Px)}\bigg)^{2} - \bigg(\sqrt{(1 - Px)}\bigg)^{2} }{x\bigg(\sqrt{(1 + Px)} + \sqrt{(1 - Px)}\bigg)} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm  \dfrac{(1 + Px) - (1 - Px)}{x\bigg(\sqrt{(1 + Px)} + \sqrt{(1 - Px)}\bigg)} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm  \dfrac{1 + Px - 1 + Px}{x\bigg(\sqrt{(1 + Px)} + \sqrt{(1 - Px)}\bigg)} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm  \dfrac{2Px}{x\bigg(\sqrt{(1 + Px)} + \sqrt{(1 - Px)}\bigg)} \\

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{x \to 0^-}\rm  \dfrac{2P}{\bigg(\sqrt{(1 + Px)} + \sqrt{(1 - Px)}\bigg)} \\

Now, to evaluate this limit, we use method of Substitution.

So, Substitute

\rm \: x \: =  \: 0 - h \:  =  \:  -  \: h, \:  \: as \: x \:  \to \: 0 \:  \: as \:  \: h \:  \to \: 0 \\

So, above expression can be rewritten as

\rm \:  - \dfrac{1}{2} = \displaystyle\lim_{h \to 0}\rm  \dfrac{2P}{\bigg(\sqrt{(1 - Ph)} + \sqrt{(1 + Ph)}\bigg)} \\

\rm \:  - \dfrac{1}{2} =  \dfrac{2P}{ \sqrt{1 - 0} +  \sqrt{1 + 0}  } \\

\rm \:  - \dfrac{1}{2} =  \dfrac{2P}{ 1 + 1} \\

\rm \:  - \dfrac{1}{2} =  \dfrac{2P}{2} \\

\color{green}\rm\implies \:\boxed{ \rm{ \:P \:  =  \:   - \:  \dfrac{1}{2} \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}


mddilshad11ab: Perfect¶
Answered by kvalli8519
25

refer the given attachment

Attachments:
Similar questions