Math, asked by reenagrg669, 2 months ago


if \: the \: polynomial \: x {}^{4}  - 6 {x}^{3}  + 16 {x}^{2}  - 25 {x}^{}  + 10 \: i s \: divided \: by \: another \: polynomial \:  {x}^{2} - 2 {x}^{}  + k \: the \: remainder \: comes \: out \: to \: be \: x + a \: find \: k \: and \: a \:

Answers

Answered by kunalkumar06500
1

{ \huge{ \pink{ \boxed{ \mathcal{ \purple{ÃÑẞWĒR}}}}}}

Step-by-step explanation:

 \pink{We \:  know \:  that,}

Dividend = Divisor × Quotient + Remainder

⇒ Dividend – Remainder  =  Divisor × Quotient

Dividend  \: – \:  Remainder  \: is  \: always \:  divisible \:  by  \: the  \: divisor.

 \boxed{Now, \:  it  \: is  \: given \:  that \:   f(x)   \: when  \: divided  \: by   \:  {x}^{2}  – 2x + k  \:  leaves \:  (x + a)  \: as \:  remainder.}

So,  \:  for   \: f(x)  \: to  \: be \:  completely \:  divisible  \: by   {x}^{2}  – 2x + k,  remainder \:  must  \: be \:  equal \:  to \:  zero

⇒  (–10 + 2k)x + (10 – a – 8k +  {k}^{2} ) = 0

⇒  –10 + 2k = 0  and  10 – a – 8k +  {k}^{2}  =  0

⇒  k = 5  and  10 – a – \:  8 (5) +  {5}^{2}  = 0

⇒  k = 5  and   – a – 5 = 0

⇒  k = 5  and   a  =  –5

{ \bf{ \blue{i \: hope \: it \: helpfull \: for \: you}}}

Attachments:
Answered by Anushkas7040
1

Answer:

Step-by-step explanation:

U will get in the pic

I hope this helps

Attachments:
Similar questions