Math, asked by Rajshuklakld, 10 months ago


if \: x = 2 +  \sqrt{3} and \: xy = 1 \\ then \: find \: the \: value \: of \:  \frac{ x  }{ \sqrt{2}  +  \sqrt{x} }  +  \frac{y}{ \sqrt{2} +  \sqrt{y}  }  \\  \\  \: no \: spam \: plzz


amitnrw: 2 + root3 = (1 + root3)^2/2

Answers

Answered by AlluringNightingale
19

Probable Question :

If \: x = 2 + \sqrt{3} \:and \: xy = 1 \: then \: find \: the \\ value \: of \: \frac{ x }{ \sqrt{2} + \sqrt{x} } + \frac{y}{ \sqrt{2} - \sqrt{y} }

\\

Answer :

√2

\\

(Also , refer to the attachments for the solution of given question)

\\

Solution :

Given : \: x = 2 + \sqrt{3} , \: xy = 1

To find : \: \frac{ x }{ \sqrt{2} + \sqrt{x} } + \frac{y}{ \sqrt{2} - \sqrt{y} }

\\

We have ;

=> xy = 1

=> y = 1/x

=> y = 1/(2 + √3)

=> y = (2 - √3)/(2 + √3)(2 - √3)

=> y = (2 - √3)/[2² - (√3)²]

=> y = (2 - √3)/(4 - 3)

=> y = (2 - √3)/1

=> y = 2 - √3

\\

Now,

=> (√x - √y)² = (√x)² - 2•√x•√y + (√y)²

=> (√x - √y)² = x - 2√(xy) + y

=> (√x - √y)² = 2 + √3 - 2√1 + 2 - √3

=> (√x - √y)² = 2 - 2 + 2

=> (√x - √y)² = 2

=> √x - √y = √2

\\

( Note : While manipulating any formula or identity , always take positive value unless it is provided in question. )

\\

Now ;

 \frac{x}{ \sqrt{2} +  \sqrt{x}  }  +  \frac{y}{ \sqrt{2}  -  \sqrt{y} }  \\  =  \frac{x( \sqrt{2}  -  \sqrt{y} ) + y( \sqrt{2}  +  \sqrt{x} )}{( \sqrt{2} +  \sqrt{x} )( \sqrt{2} -  \sqrt{y})   }  \\  =  \frac{x \sqrt{2} - x \sqrt{y}  + y \sqrt{2}   + y \sqrt{x} }{ \sqrt{2} \sqrt{2}  -  \sqrt{2} \sqrt{y}  +  \sqrt{2}  \sqrt{x}  -  \sqrt{x}  \sqrt{y}   }  \\  =  \frac{x \sqrt{2} + y \sqrt{2}  - x \sqrt{y}  + y \sqrt{x}  }{2 +  \sqrt{2} \sqrt{x}  -  \sqrt{2} \sqrt{y}  -  \sqrt{x}   \sqrt{y}  }  \\  =  \frac{ \sqrt{2}(x + y) -  \sqrt{xy} ( \sqrt{x}  -  \sqrt{y}  )}{2 +  \sqrt{2}( \sqrt{x}   -  \sqrt{y} ) -  \sqrt{xy} }  \\  =   \frac{ \sqrt{2} \times 4 -  \sqrt{1}  \times  \sqrt{2} }{2 +  \sqrt{2} \times  \sqrt{2}  - 1 }  \\  =   \frac{4 \sqrt{2}  -  \sqrt{2} }{2 + 2 - 1}  \\  =  \frac{3 \sqrt{2} }{3}  \\  =  \sqrt{2}

 \\

Hence ,

The required answer is 2 .

Attachments:

Anonymous: Perfect ! ♥️
Similar questions