Math, asked by binaybauri061, 7 months ago


if x = 2  + \sqrt{3} find  \: the \: value \: of \: x ^{2}  +  \frac{1}{x ^{2} }

Answers

Answered by Anonymous
9

\pink\bigstar Answer:

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  =  \boxed{14}

\red\bigstar Given:

  • x = 2 + √3

\green\bigstarTo find:

  • The value of x² + 1/x²

\blue\bigstar Solution:

x = 2 + √3

So,

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

Now, by rationalising the denominator, we get,

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3} )(2 -  \sqrt{3}) }

 \implies  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  { (\sqrt{3} }^{2} )}

{ By using (a + b)(a - b) = - }

 \implies \:  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \implies \:  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{1}

 \implies \:  \frac{1}{x}  = 2 -  \sqrt{3}

\therefore 1/x = 2 - √3

Now, x² + 1/x² = ( x + 1/x )² - 2

So, x² + 1/x² = ( 2 + √3 + 2 - √3 )² - 2

( By substituting the values of x and 1/x )

 \implies \:  {x}^{2}  +   \frac{1}{ {x}^{2} }  =  {(4)}^{2}  - 2

( 3 and -3 get cancelled)

 \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2

 \implies \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14

 \therefore \:   \boxed{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 14}

\pink\bigstarConcepts used in the answer :

  • a² - b² = ( a + b )( a - b )
  • Substituting the values.
  • Rationalising the denominator.

\red\bigstarSome identities:

  • (a + b)(a - b) = a² - b²
  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (a + b)³ = a³ + b³ + 3ab² + 3a²b
  • a³ + b³ = ( a + b )(a² - ab + b²)
  • a³ - b³ = (a - b) ( a² + b² + ab)
Similar questions