Math, asked by ChaudharyAruLohach, 3 months ago


if x = 2 +  \sqrt{3}    find  = x + 1\x

Answers

Answered by Salmonpanna2022
3

Answer:

The \: value \: of \: x +  \frac{1}{x}  \: is \: 4.

Step-by-step explanation:

Given:

  • x = 2+√3

To find:

  • The value of $\fbox{${{x}\mathrm{{+}}\frac{1}{x}}$}$

Solution:

x  = 2 +  \sqrt{3}  \\

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2 {)}^{2} -( \sqrt{3} {)}^{2}  } \\

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\

 \frac{1}{x}  = 2 -   \sqrt{3}  \\

Now, substitute the value

x +  \frac{1}{x}  \\

\longrightarrow \: 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\

 \longrightarrow2 + 2 \\

 \longrightarrow4 \\

Hence \: the \: value \: of \: x +  \frac{1}{x}  \: is \: 4. \\

Similar questions