Answers
Answered by
5
....................
Attachments:
deepa74:
thanks
Answered by
2
⇒ ( x² + yx - 3 ) = ( x - 3 ) ( x + 1 )
⇒ ( x² + yx - 3 ) = x ( x + 1 ) - 3 ( x + 1 )
⇒ x² + yx - 3 = x² + x - 3x - 3
⇒ x² + yx = x² - 2x - 3 + 3
⇒ x² - x² + yx = -2x
⇒ yx = -2x
⇒ y = -2x / x
∴ y = -2.
Verification :
L.H.S = ( x² + yx - 3 )
= { x² +( -2 )x - 3 }
= ( x² - 2x - 3 ).
R.H.S = ( x - 3 ) ( x + 1 )
= x ( x + 1 ) - 3 ( x + 1 )
= x² + x - 3x - 3
= x² - 2x - 3
Hence , L.H.S = R.H.S verified.
So, the value of y is ( -2 ).
⇒ ( x² + yx - 3 ) = x ( x + 1 ) - 3 ( x + 1 )
⇒ x² + yx - 3 = x² + x - 3x - 3
⇒ x² + yx = x² - 2x - 3 + 3
⇒ x² - x² + yx = -2x
⇒ yx = -2x
⇒ y = -2x / x
∴ y = -2.
Verification :
L.H.S = ( x² + yx - 3 )
= { x² +( -2 )x - 3 }
= ( x² - 2x - 3 ).
R.H.S = ( x - 3 ) ( x + 1 )
= x ( x + 1 ) - 3 ( x + 1 )
= x² + x - 3x - 3
= x² - 2x - 3
Hence , L.H.S = R.H.S verified.
So, the value of y is ( -2 ).
Similar questions