Math, asked by SweetestBitter, 2 months ago


If  \: x(b - c) + y(c - a) + z(a - b) = 0 \\  \\  \star  \:  \underline {Then \: prove \: that : } \\  \\  \large \boxed{ \frac{(bz - cy)}{b - c}  =  \frac{(cx - az)}{c - a}  =  \frac{(ay - bx)}{a - b} }


NOTE :\\   \dag  \underline{\: No \: spams \: or \: Copied \: answers}

Answers

Answered by assingh
32

Given :-

x(b-c)+y(c-a)+z(a-b)=0

where\:a,b,c\neq0

To Prove :-

\dfrac{bz-cy}{b-c}=\dfrac{cx-az}{c-a}=\dfrac{ay-bx}{a-b}

Proof :-

x(b-c)+y(c-a)+z(a-b)=0

bx-cx+cy-ay+az-bz=0

bx-cx+az=bz-cy+ay

Multiply with 'c' in whole equation,

bcx-c^2x+acz=bcz-c^2y+acy

Subtract 'abz' from both sides,

bcx-abz-c^2x+acz=bcz-c^2y-abz+acy

b(cx-az)-c(cx-az)=c(bz-cy)-a(bz-cy)

(cx-az)(b-c)=(bz-cy)(c-a)

\boxed{\dfrac{bz-cy}{b-c}=\dfrac{cx-az}{c-a}}\longrightarrow Equation\:(1)

x(b-c)+y(c-a)+z(a-b)=0

bx-cx+cy-ay+az-bz=0

cy-ay+bx=cx-az+bz

Multiply with 'a' in whole equation,

acy-a^2y+abx=acx-a^2z+abz

Subtract 'bcx' from both sides,

acy-bcx-a^2y+abx=acx-a^2z-bcx+abz

c(ay-bx)-a(ay-bx)=a(cx-az)-b(cx-az)

(ay-bx)(c-a)=(cx-az)(a-b)

\boxed{\dfrac{cx-az}{c-a}=\dfrac{ay-bx}{a-b}}\longrightarrow Equation\:(2)

From Equation (1) and (2),

\underline{\boxed{\dfrac{bz-cy}{b-c}=\dfrac{cx-az}{c-a}=\dfrac{ay-bx}{a-b}}}

Hence, Proved !!


Saby123: Eccezionale
Similar questions