Math, asked by soham4019, 11 months ago


if \: x =  \frac{1}{2 -  \sqrt{3} } \: show \: value \: of \: x {}^{3}  - 2 {x}^{2}  - 7x + 5 \: is \: 3

Answers

Answered by MisterIncredible
15

......!!!↪Answer↩!!!.....

Given ✍ :

\bold{If\:x\:=\: \frac {1}{2\:-\: \sqrt {3}}}

\rule{400}{2}

➾Required to find :

  1. \bold{Value\:of\:{x}^{3}\:-\:2{x}^{2}\:-\:7x\:+\:5\:=\:3}

\rule{400}{4}

◈Rationalising the denominator :

Rationalising the denominator is important before Solving any question .

So; similarly we have to Rationalise the denominator of the value given for " x "

The value of x is

x =  \frac{1}{2 -  \sqrt{3} }

However;

we have to Rationalise the denominator of value of x

So;

Rationalising Factor of 2 - √3 is 2 + √3

Here is the process of Rationalising.

 \frac{1}{2 -  \sqrt{3} }  \\  \\  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  =  \frac{2 +  \sqrt{3} }{(2 {)}^{2} - ( \sqrt{3} {)}^{2}   }  \\  \\  =  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  =  \frac{2 +  \sqrt{3} }{1}

\boxed{\longrightarrow{\large{\boxed {value\:of\:x\:is\:2\:+\: \sqrt {3}}}}}

Successful , the value of x is 2 + √3 .

\rule{400}{4}

Solution ✏ :

From the above we came to know that;

Value of x is 2 + √3 .

Now we have to find the value of x^3 and x^2 because they have powers on them .

So ;

Value of x^3 is ;

(2 +  \sqrt{3}  {)}^{3}  \\ using \: (x + y {)}^{3}  =  {x}^{3}  +  {y}^{3} + 3 {x}^{2}  y + 3x {y}^{2}  \\ so \\ (2 +  \sqrt{3}  {)}^{3}  \\  \\  = (2 {)}^{3}  + ( \sqrt{3}  {)}^{3}   + 3(2 {)}^{2} ( \sqrt{3} ) + 3(2)( \sqrt{3}  {)}^{2}  \\  \\ =  8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 18 \\  \\  = 26 + 15 \sqrt{3}

Similarly;

We have to find the Value of x^2

That is ;

 {x}^{2} \\   = (2 +  \sqrt{3}  {)}^{2}  \\ using \: (x + y {)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  = (2 {)}^{2}  + ( \sqrt{3} {)}^{2}   +2 (2)( \sqrt{3} ) \\  \\  = 4 + 3 + 4 \sqrt{3}  \\  \\  = 7 + 4 \sqrt{3}

Hence ;

Now let's find the value of full expressions

That is

 {x}^{3}  - 2 {x}^{2}  - 7x + 5

Hence; substitute the values.

26 + 15 \sqrt{3}  - 2(7 + 4 \sqrt{3} ) - 7(2 +  \sqrt{3} ) + 5 \\  \\ 26 + 15 \sqrt{3}  - 14 - 8 \sqrt{3}  - 14 - 7 \sqrt{3}  + 5 \\  \\ 26 - 14 - 14 + 5 + 15\sqrt{3}  - 8 \sqrt{3}  - 7 \sqrt{3}  \\  \\ 31 - 28 + 15 \sqrt{3}  - 15 \sqrt{3}  \\  \\ 3 + 0 \\  \\  = 3

Therefore;

The value of

 value \: of \: {x}^{3}  - 2 {x}^{2}  - 7x + 5 \: is \: 3

✔ Hence proved

\rule{400}{4}

Answered by Cynefin
15

━━━━━━━━━━━━━━━━━━━━━━

Answer

♦️GiveN:

  •  \large{ \tt{x =  \frac{1}{2 -  \sqrt{3} } }}

♦️To ProvE:

  •  \large{ \tt{ \:  {x}^{3}  - 2 {x}^{2}  - 7x + 5 = \:  \: 3}}

━━━━━━━━━━━━━━━━━━━━━━

Solution

First we need to rationalize the value of x , So that it could be easier to use in further calculation.

Rationalizing the given value of x,

 \large{ \tt{ \rightarrow \: x =  \frac{1}{2 -  \sqrt{3} } }} \\  \\  \large{ \sf{ \star{ \: rationalizing \: factor \: of \: 2 -  \sqrt{3}  = 2 +  \sqrt{3} }}} \\  \\  \large{ \tt{ \rightarrow \: x =  \frac{1(2 +  \sqrt{3})}{(2 -  \sqrt{3})(2 +  \sqrt{3} ) } }} \\  \\  \large{ \tt{ \rightarrow \: x =  \frac{2  +  \sqrt{3} }{ {2}^{2}  -  { (\sqrt{3}) }^{2} } }} \\  \sf{ \green{by \: using \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }} \\  \\  \large{ \tt{ \rightarrow \: x =  \frac{2 +  \sqrt{3} }{4 - 3} }} \\  \\  \large{ \tt{ \rightarrow \: x =  \frac{2 +  \sqrt{3} }{1} }} \\   \\  \large{ \rightarrow{ \boxed{ \purple{ \tt{x = 2 +  \sqrt{3} }}}}}

━━━━━━━━━━━━━━━━━━━━━━

➯We had our equation to prove:

 \large{ \tt{ \star{ \:   \:  \: {x}^{3}  - 2 {x}^{2}  - 7x + 5 \:  =  \: 3}}}

⭐Without putting actual value of x , Let's break the to proof equation down in such a way that at last we get our value by simplification only.....

♦️First of all, forming an equation with x

We have,

 \large{ \tt{ \rightarrow \: x = 2 +  \sqrt{3} }}

Subtracting 2 from both sides,

 \large{ \tt{ \rightarrow \: x - 2 =  \sqrt{3} }}

Squaring both sides,

 \large{ \tt{ \rightarrow \: (x - 2) {}^{2}  = 3}} \\  \\  \large{ \tt{ \rightarrow \:  {x}^{2}  - 4x + 4 = 3}}

Subtracting 3 both sides,

 \large{ \rightarrow \:   \boxed{ \tt{{x}^{2}  - 4x + 1 = 0}}}.......(1)

━━━━━━━━━━━━━━━━━━━━━━

Proof

 \large{ \sf{ \underline{ \underline{LHS}}}}

 \large{ \tt{ \rightarrow \:  {x}^{3}  - 2 {x}^{2}  - 7x + 5}}

➯Arranging to get equation (1)

 \large{ \tt{ \rightarrow \: x( {x}^{2}  - 4x + 1) + 2 {x}^{2}  - 8x + 5}}

Putting value of equation (1),

 \large{ \tt{ \rightarrow \: x(0) + 2 {x}^{2}  - 8x + 5}} \\  \\  \large{ \tt{ \rightarrow \: 2 {x}^{2}  - 8x + 5}}

Again arranging for equation (1),

 \large{ \tt{ \rightarrow \: 2( {x}^{2} - 4x + 1) + 3}}

Putting value of equation (1),

 \large{ \tt{ \rightarrow \: 2(0) + 3}} \\  \\  \large{ \tt{ \rightarrow \: 3}} \:  \:  \:  \:  \:  \:  \large{ \sf{ \underline{ \underline{(RHS)}}}}

Hence,proved!!!!

━━━━━━━━━━━━━━━━━━━━━━

Similar questions