Math, asked by Prxyaaa, 2 months ago


If \: x =  \frac{1}{8 -  \sqrt{60} }
what \:  is  \: the  \: value  \: of  \: ( {x}^{3}  -  {5}^{2}  + 8x - 4)?\  \textless \ br /\  \textgreater \

Answers

Answered by ZaraAntisera
5

Answer:

\left(\frac{1}{8-\sqrt{60}}\right)^3-5^2+8\times \frac{1}{8-\sqrt{60}}-4=-\left(-\frac{95\sqrt{15}+372}{8}\right)-29

Step-by-step explanation:

\left(\frac{1}{8-\sqrt{60}}\right)^3-5^2+8\times \frac{1}{8-\sqrt{60}}-4

=\frac{1}{1952-504\sqrt{15}}-5^2+\frac{4}{4-\sqrt{15}}-4

=\frac{4}{4-\sqrt{15}}+\frac{1}{1952-504\sqrt{15}}-5^2-4

=-5^2-\frac{7812-2017\sqrt{15}}{3968\sqrt{15}-15368}-4

5^2=25

=-25-\frac{7812-2017\sqrt{15}}{3968\sqrt{15}-15368}-4

\mathrm{Subtract\:the\:numbers:}\:-25-4=-29

=-\frac{7812-2017\sqrt{15}}{3968\sqrt{15}-15368}-29

=-\left(-\frac{95\sqrt{15}+372}{8}\right)-29

Similar questions