Social Sciences, asked by ruby12345678, 1 year ago

if \: x - \frac{1}{x} = 2 \: \\ \\ find \: {x}^{2} + \frac{1}{ {x}^{2} }

Answers

Answered by Anonymous
46

\huge\underline\mathfrak\pink{Answer}

 x^{2}  +  \frac{1}{x^{2} } = 2

___________________

\huge\underline\mathfrak\pink{Explanation}

Given :

x -  \frac{1}{x}  = 6

To find :

 {x}^{2}  +   \frac{1}{ {x}^{2} }

Solution :

We know that,

(a - b)^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Let,

a = x

b =  \frac{1}{x}

Put the value of a and b in the above identity,

\rightarrow (x -  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{x^{2} } - 2(x)( \frac{1}{x} )

Now, Put the given values in above identity.

\rightarrow (2)^{2}  = x^{2}  +  \frac{1}{x^{2} } - 2

\rightarrow 4 + 2 = x^{2}  +  \frac{1}{x^{2} }

\rightarrow  x^{2}  +  \frac{1}{x^{2} } = 6

Similar questions