Math, asked by sudarshankumar80, 1 year ago


if \: x -  \frac{1}{x }  = 3 + 2 \sqrt{2}  \:  \: find \: the \: value \: of \:  {x}^{3}  -   \frac{1}{{x}^{3} }

Answers

Answered by Anonymous
4

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf\red{   {x}^{3}  -  \frac{1}{ {x}^{3} }  = 108 + 76 \sqrt{2}}}

\mathfrak{\large{\underline{\underline{Given:-}}}}

if \: x - \frac{1}{x } = 3 + 2 \sqrt{2}

\mathfrak{\large{\underline{\underline{To find:-}}}}

the value of {x}^{3} - \frac{1}{{x}^{3} }

\mathfrak{\large{\underline{\underline{Solution:-}}}}

Cubing on both sides we get,

\implies \bold{{(x -  \frac{1}{x}) }^{3}  =   (3 + 2 \sqrt{2} )^{3} }

\implies \bold{ {x}^{3}  -  \frac{1}{ {x}^{3} }  -3 x \times  \frac{1}{x} (x -  \frac{1}{x}) =  {3}^{3}   + (2 \sqrt{2} )^{3} +  3. {3}^{2}.2 \sqrt{2}   + 3.3 {(2 \sqrt{2} )}^{2} .}

put the value of x - 1/x

\implies \bold{ {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3.(3 + 2 \sqrt{2} ) = 27 + 16 \sqrt{2}  + 54 \sqrt{2}  + 72}

\implies \bold{   {x}^{3}  -  \frac{1}{ {x}^{3} }  - 9 - 6 \sqrt{2}  = 99 + 70 \sqrt{2} }

\implies \bold{ {x}^{3}  -  \frac{1}{ {x}^{3} }  = 99 + 9 + 70 \sqrt{2}  + 6 \sqrt{2} }

\implies \bold{{x}^{3}  -  \frac{1}{ {x}^{3} }  = 108 + 76 \sqrt{2} }

Identity used :-

\boxed</strong><strong>{\sf</strong><strong>\</strong><strong>r</strong><strong>e</strong><strong>d</strong><strong>{</strong><strong>(x  -  y) ^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)</strong><strong>  }}

\boxed{\sf</strong><strong>\</strong><strong>r</strong><strong>e</strong><strong>d</strong><strong>{  </strong><strong>(x - y) ^{3}  =  {x}^{3}  -  {y}^{3}  - 3 {x}^{2} y - 3x {y}^{2} </strong><strong>}}


Blaezii: Nice expk
Blaezii: **Nice Explanation
Anonymous: :) wello
Similar questions