Math, asked by ghivdondetejal, 10 months ago


if \: x =  \frac{ \sqrt{5} - 2 }{ \sqrt{5}  + 2} find \: the \: value \: of \: x +  \frac{1}{x}

Answers

Answered by tahseen619
3

18

Step-by-step explanation:

Given:

x =  \dfrac{ \sqrt{5}  -  2 }{ \sqrt{5} + 2}

To Find:

x +  \dfrac{1}{x}

Process to Solve:

1. Don't Need to Rationalize because it's a like fraction

2. Take L.C.M

3. Use Algebra Formula

4. Simplify and Get the answer

Simple, Isn't it ?

Solution:

x +  \frac{1}{x}  \\  \\  =  \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2}  +  \frac{ \sqrt{5}  + 2}{ \sqrt{5} -  2}  \\ \\ [\text{By taking L.C.M}] \\ \\  =  \frac{ ( \sqrt{5}  - 2) {}^{2} +  {( \sqrt{5} + 2) }^{2}  }{( \sqrt{5}  + 2)( \sqrt{5} - 2) }  \\  \\  =  \frac{2 \{(\sqrt{5 }) {}^{2} + (2 {)}^{2} \} }{ {( \sqrt{5})}^{2} -  {(2)}^{2}  }  \\  \\  =  \frac{2(5 + 4)}{5 - 4}  \\  \\  =  \frac{2(9)}{1}  \\  \\  = 18

Therefore, The required answer is 18.

Algebra Formula Used

a² - b² = (a + b)(a - b)

(a - b)² + (a + b)² = 2(a² + b²)

What is Like Fraction ?

When the nominator and denominator of two fraction are similar but different by sign.

Similar questions