Math, asked by shreyaSingh2022, 2 months ago


If  \: x =  \frac{ \sqrt{a + 2b}  +  \sqrt{a + 2b} }{ \sqrt{a + 2b} - \sqrt{a - 2b}   } , \: prove \: that \:  {bx}^{2}  - ax + b = 0.
Only that user solve this question who know.
Wrong answer will be reported.

Answers

Answered by Salmonpanna2022
11

Step-by-step explanation:

Question:

If  \: x =  \frac{ \sqrt{a + 2b}  +  \sqrt{a + 2b} }{ \sqrt{a + 2b} - \sqrt{a - 2b}   } , \: prove \: that \:  {bx}^{2}  - ax + b = 0.

To prove:

that bx²-ax+b=0

Solution:

x = $\frac{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{-}}\sqrt{{a}\mathrm{{-}}{2}{b}}}$×$\frac{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}$

= $\frac{{\mathrm{(}}\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}{\mathrm{)}}^{2}}{{\mathrm{(}}\sqrt{{a}\mathrm{{+}}{2}{b}}{\mathrm{)}}^{2}\mathrm{{-}}\sqrt{{a}\mathrm{{-}}{2}{b}}{\mathrm{)}}^{2}}$

=$\frac{{a}\mathrm{{+}}{2}{b}\mathrm{{+}}{a}\mathrm{{-}}{2}{b}\mathrm{{+}}{2}\mathrm{{-}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}{{a}\mathrm{{+}}{2}{b}\mathrm{{-}}{\mathrm{(}}{a}\mathrm{{-}}{2}{b}{\mathrm{)}}}$

=>$\frac{{a}\mathrm{{+}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}{2b}$

=> $\fbox{${{2}{bx}\mathrm{{=}}{a}\mathrm{{+}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}$}$

=> $\fbox{${{2}{bx}\mathrm{{-}}{a}\mathrm{{=}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}$}$

Squaring on both sides,we get

(2bx-a²) = a²-4b²

=> 4b²x²+a²-4abx-a²+4b² = 0

=> 4b²x²-4abx+4b² = 0 => 4(b²x²-abx+b²) = 0

=> b²x²-abx+b² = 0 => b(bx²-ax+b) = 0

=> bx²-ax+b = 0 Hence, proved.

giving \: answer \: in \: 2 \: min

Answered by AMITRANETAMITYEDU
1

Answer:

see above write answer see

Similar questions