Math, asked by SƬᏗᏒᏇᏗƦƦᎥᎧƦ, 4 months ago


If \:  x > 0  \: and  \: x {}^{2}  +  \frac{1}{9x {}^{2} }  =  \frac{25}{36}  ,\\
So find the value of:
x {}^{3}  +  \frac{1}{27 {x}^{3} } \\

✔️ Don't spam​

Answers

Answered by itzPapaKaHelicopter
28

\huge \fbox \green{Answer:}

Given that:

 {x}^{2}  +  \frac{1}{9 {x}^{2} }  =  \frac{25}{36}

⇒ {x}^{2}  +  \frac{1}{(3x {)}^{2} } =  \frac{25}{36}

We Know that

⇒(a + b {)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

So Consider the expansion of

 = (x +  \frac{1}{3x}  {)}^{2}

⇒(x +  \frac{1}{3x}  {)}^{2}  =  {x}^{2}  +  \frac{2x \times 1}{3x}  +  \frac{1}{9 {x}^{2} }

 =  {x}^{2}  +  \frac{2}{3}  +  \frac{1}{9 {x}^{2} }

⇒ {x}^{2}  +  \frac{1}{(3x {)}^{2} }  +  \frac{2}{3}

From

\sf \colorbox{pink} {we can write that}

⇒(x +  \frac{1}{3x}  {)}^{2}  =  \frac{25}{36}  +  \frac{2}{ 3}  =  \frac{49}{36}

∴x +  \frac{1}{3x}  =  \sqrt{ \frac{49}{36} }  =  \overset{ + }{\longrightarrow}  \frac{7}{6}

Given That ,

x > 0

⇒ \frac{x + 1}{3x}  =  \frac{7}{6}

\text{Now  ,}

⇒ {x}^{3}  +  \frac{1}{27 {x}^{3} }  = (x +  \frac{1}{3x} ) \:  \:  \:  \:  \: [ {x}^{2}  +  \frac{1}{9 {x}^{2} }   -  \frac{(x)1}{3x}

 =  \frac{7}{6} ( \frac{25}{36}  -  \frac{1}{3} )

 =  \frac{7}{6} ( \frac{25 - 12}{36} )

 =  \frac{7}{6}  \times  \frac{13}{36}

 =  \frac{91}{216}

Hence,

: {x}^{3}  +  \frac{1}{27 {x}^{3} }  =  \frac{91}{216}

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by itzDivu
0

Step-by-step explanation:

hope it helps you ☺️✌️dear

Attachments:
Similar questions