Math, asked by biman09876543210, 16 days ago


if  \:  \:  \: \: x + iy + 3  =  \: y \:  + 4xi \:  \\ then \: find \: x \: and \: y
Find x and y



Answers

Answered by harshs0271
3

Compare real parts and imaginary parts

x +3 = y and y = 4x

gives x+3 = 4x

gives x = 1

gives y = 4

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm \: x + iy + 3 = \: y \: + 4xi \\

can be re-arranged as

\rm \: (x + 3) + iy \:  = \: y + 4xi \\

So, on comparing Imaginary parts, we have

\rm \: y = 4x -  -  - (1) \\

And on comparing real parts, we get

\rm \: x + 3 = y \\

On substituting the value of y from equation (1), we get

\rm \: x + 3 = 4x \\

\rm \: 4x - x = 3 \\

\rm \: 3x = 3 \\

\rm\implies \:\boxed{ \bf{ \:x  \: =  \: 1 \: }} \\

So, on substituting the value of x in equation (1), we get

\rm \: y \:  =  \: 4 \times 1 \\

\rm\implies \:\boxed{ \bf{ \:y  \: =  \: 4 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

Argument of complex number :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions