Math, asked by shreyaSingh2022, 3 months ago


if \: x =  \sqrt{ \frac{5 +  \sqrt{6} }{5 - 2 \sqrt{6} } }  \: show \: that \:  {x}^{2} (x - 10)^{2}  = 1 \\  \\
Salmonpanna2022 please solve this question.

Wrong answer will be reported.​

Answers

Answered by Salmonpanna2022
11

Answer:

1 Ans

Step-by-step explanation:

Question:

if \: x =  \sqrt{ \frac{5 + 2 \sqrt{6} }{5 - 2 \sqrt{6} } } \:  show \: that \:  {x}^{2} (x - 10)^{2}  = 1

Solution:

x =  \sqrt{ \frac{5 + 2 \sqrt{6} }{6} \times     \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} } }  =  \sqrt{ \frac{(5 + 2 \sqrt{6})^{2}  }{ ({5})^{2} - (2  \sqrt{6} )^{2} } }  \\  =  \frac{5 + 2 \sqrt{6} }{ \sqrt{25 - 24} }  =  \frac{5 + 2 \sqrt{6} }{1}  = 5 + 2 \sqrt{6}  \\

∴ x²(x-10)² = (5+2√6)²(5+2√6-10)²

 = (5 +  2 \sqrt{6} )^{2} (2 \sqrt{6} - 5) ^{2}   \\  = (25 + 24 + 20 \sqrt{6} )(24 + 25 - 20 \sqrt{6} ) \\  = (49 + 20 \sqrt{6} )(49 - 20 \sqrt{6} ) \\  = ( {49})^{2}  - (20 \sqrt{6} ) ^{2}  \\  = 2401 - 2400 = 1 \: ans.

Answered by ayanzubair
2

ANSWER IN ATTACHMENT FILE

Attachments:
Similar questions