Math, asked by VinodVish, 1 year ago


if \: x + y + z = 0 \: prove\: that {x}^{3}  +  {y}^{3}  +  {z}^{3}  = 3xyz

Answers

Answered by fiercespartan
0
hey!!

here is your answer >>>

We know that x^3 + y^3 + z^3 - 3xyz = (x + y + z) (x^2+ y^2 + z^2 - xy - yz - zx)

Now if x + y + z = 0, then

x^3 + y^3 + z^3 - 3xyz = ( 0 ) (x^2 + y^2 + z^2 - xy - yz - zx)  .

  subsituting the value of x + y + z

x^3  + y^3 + z^3 - 3xyz = 0 

 as any thing multiplied by 0 is 0 

x^3  + y^3  + z^3 = 3xyz .      


transporting -3xyz form L.H.S to R.H.S making the term positive

Hope this answer helps!
Answered by Shreyanshijaiswal81
0

x + y + z = 0 =  >  x  + y =  - z \\  =  > (x + y)^{3}  = ( - z )^{3}  \\  =  > x^{3}  + y ^{3}  + 3xy \: (x + y) = ( - z) =  -  {z} \\  =  > x^{3}  + y ^{3}  + 3xy ( - z ) =  -  {z}^{3}  \\  =  > x^{3}  + y ^{3}   -  3xyz  = 3xyz

Hence,(x + y + z) = 0  =  > ( {x}^{3}  {y}^{3}  {z}^{ 3} ) = 3xyz

Similar questions