Physics, asked by piku8155, 11 months ago


if \: y =   \frac{ log_{e}(x) }{ {x}^{2} } then \: find \: the \: value \: of \:  \frac{dy}{dx}

Answers

Answered by Anonymous
11

Here is ur answer:

Given that,

y =  \frac{ log_{e}(x) }{ {x}^{2} }  \:  \: then

 \frac{dy}{dx}  =   \frac{d}{dx} ( \frac{ log_{e}(x) }{ {x}^{2} } ) =  \frac{ {x}^{2} \frac{d}{dx}( log_{e}x) -  log_{e}x. \frac{d( {x}^{2}) }{ {dx}    {}^{}   }     }{( {x}^{2}) {}^{2}  }

 \frac{dy}{dx}  =  \frac{ {x}^{2} \binom{ \frac{1}{x} }{} -  log_{e}x(2 {x}^{2 - 1} )   }{ {x}^{4} }  =  \frac{x -  {2x log_{e}x } }{ {x}^{4} }

 \frac{dy}{dx}  =  \frac{x}{ {x}^{4}  }  -  \frac{2 xlog_{e}x }{ {x}^{4} }  =  \frac{1}{ {x}^{3} }  -  \frac{2 log_{e}x }{ {x}^{3} }  =  \frac{1}{ {x}^{3} }  -  \frac{ log_{e} {x}^{2}  }{ {x}^{3} }  =  \frac{1 -  log_{e} {x}^{2}  }{ {x}^{3} }

Hope this will help you

Answered by Anonymous
1

dy/dx=1/x

When x=3, dy/dx=1/3 and y=ln3

.'. gradient of tangent at x=3 is 1/3

Use point gradient formula: y-y1=m(x-x1)

y-ln3=1/3.(x-3)

y=x/3 + ln3 - 1 or x-3y+ln3-3=0

Similar questions