Math, asked by BOOSTER01, 11 months ago


if \: y =  \sqrt{x +  \sqrt{x +  \sqrt{x + .......... \infty  \: } } }  \\ show \: that \: (2y - 1) \: dy \div dx = 1
PLZZ ANSWER IT FAST .​

Answers

Answered by Anonymous
65

Question :

If y =  \sqrt{x +  \sqrt{x +  \sqrt{x + ... \infty } } }

Show that (2y-1)\dfrac{dy}{dx}=1

Formula :

• Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

 \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

• Differentiation Formula's

1) \dfrac{d(sinx)}{dx}  = cosx

2) \dfrac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

3) \dfrac{d(constant)}{dx}  = 0

Solution :

y  = \sqrt{x +  \sqrt{x   + \sqrt{x + ... \infty } } }

 \implies \: y =  \sqrt{x + y}

Now squaring on both sides

 \implies \: y {}^{2}  = x + y

 \implies \: y {}^{2}  - y = x

Now differentiate with respect to x

 \implies2y \dfrac{dy}{dx}  -  \dfrac{dy}{dx}  = 1

 \implies(2y - 1) \dfrac{dy}{dx}  = 1

Hence proved !

Answered by amitkumar44481
50

Formula Required :

 \tt   \red\star  \: when \: y =  {x}^{n}  \\  \tt  then \:  \frac{dy}{dx}  =  {(nx)}^{n - 1}

Solution :

we have given,

  \tt If\: y =  \sqrt{x +  \sqrt{x +  \sqrt{x..... \infty } } }

  \implies \tt y =  \sqrt{x +  \sqrt{x +  \sqrt{x..... \infty } } }

we can also write as,

 \tt \implies  y =  \sqrt{x + y} .

Squaring both sides,we get.

 \implies \tt  {y}^{2}  = x + y.

 \implies \tt  {y}^{2} - y  = x.

Now, differentiate below equation with respect to x, we get.

 \tt \implies{( 2 \times y \times 1) }^{2 - 1}   - {(x \times 1)}^{1 - 1} = 1.

 \implies \tt 2y  \frac{dy}{dx} -  {x}^{0} \frac{dy}{dx}   = 1

 \implies \tt \: 2y \frac{dy}{dx}  -  \frac{dy}{dx}  = 1.

Taking common dy / dx.

 \tt \implies \frac{dy}{dx} (2y - 1) = 1.

Hance Proved.

\rule{200}3

Some Formula :

  • y = a^x
  • dy/dx = a^x log e^a.

  • y = tanx
  • dy/dx = sec²x.

  • y= sec x
  • dy/dx = sec x . tan x

  • y= cot x
  • dy/dx = -cosec ²x

  • y= cosec x
  • dy/dx = -cosec x . cot x.
Similar questions