Math, asked by karthikeyaathri, 3 months ago


if \: y =  {x}^{ \tan(x) }  +  { \sin(?) }^{cos(x) } find \: dy \div dx

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  {x}^{ \tan(x) }  +  \sin(x) ^{ \cos(x) }

 \implies \frac{dy}{dx}  =  {x}^{ \tan(x) }  [ \frac{d}{dx} ( \tan(x)  ln(x)) ] +  { \sin(x) }^{ \cos(x) }  [ \frac{d}{dx}( \cos(x)   ln( \sin(x) ) )] \\

 \implies \frac{dy}{dx}  =  {x}^{ \tan(x) } [ \sec^{2} (x) ln(x)   +  \frac{ \tan(x) }{x} ] +  { \sin(x) }^{ \cos(x) } [ -  \sin(x)  ln( \sin(x) ) +   \cos(x)  \tan(x)  ] \\

Answered by haseto345
0

Step-by-step explanation:

kkakakkaiaoaoaoaooaoaoaoa

Similar questions