Math, asked by NANDANI4437, 10 months ago


ifa + b = 8and \: ab = 6find \: the \: value \: of \: a {}^{3}  + b {}^{3}
please solve it​

Answers

Answered by nichala23
27

Step-by-step explanation:

Hope this helps u Please make me as a brainliest

Attachments:
Answered by vikram991
69

Given,

  • a + b = 8
  • ab = 6

To Find,

  • a³ + b³ = ?

Solution :

We Know that :

\boxed{\sf{\pink{(a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)}}}

Here, Value Put

  • a + b = 8
  • ab = 6

\implies \sf{(8)^{3} =a^{3} + b^{3} + 3 \times 6 \times 8 }

\implies \sf{512 = a^{3} + b^{3} + 144}

\implies \sf{a^{3} + b^{3} = 512 - 144}

\implies \boxed{\sf{a^{3} + b^{3} = 368}}

\rule{200}2

\underline{\boxed{\bold{\pink{Other \ Identities:}}}}

\implies \sf{a^{2} + b^{2} = (a + b) - 2ab}

\implies \sf{a^{2} + b^{2} = (a-b) + 2ab}

\implies \sf{(a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)}

\implies \sf{a^{3} + b^{3} = (a + b) (a^{2} + b^{2} - ab)}

\implies \sf{ a^{3} + b^{3} + c^{3} -3abc = (a+b+c)(a^{2} + b^{2}+ c^{2}- ab - bc - ca)}


EliteSoul: Awesome!
Similar questions