Math, asked by kaushik1779, 1 year ago


ifa \sec\alpha  + b \tan  \alpha  + c = 0 \: and \: p \sec \alpha  + q \tan \alpha  + r = 0.then \:prove \: that \: (br - qc {)}^{2}  - (pc - ar) {}^{2}  = (aq - bp) {}^{2} . \\  \\

Answers

Answered by vanshikavikal448
82

 \huge\bold{\color{green}\mid{\underline{ \underline\mathfrak\red{Answer}}}\mid}

\bold { \underline{ \underline{given :- }}}

a \sec\theta +  \tan \theta + c = 0 \\ and \\ p \sec \theta + q \tan \theta + r = 0

  \bold{ \underline{ \underline{to \: prove:-}}}

 {(br - qc)}^{2}  -  {(pc - ar)}^{2} =  {(aq - bp)}^{2}

 \bold { \underline{ \underline{proof  :}}}

we have,

a \sec\theta +  \tan \theta + c = 0 \\ and \\ p \sec \theta + q \tan \theta + r = 0

solveing these two equations by the cross multiplication for sec theta and tan theta, we get

 \bold{\frac{ \sec \theta}{br - qc} =  \frac{ \tan \theta}{cp - ar} =    \frac{1}{aq - bp} }</p><p>

 \bold{ \implies \sec \theta =  \frac{br - cq}{aq - bp} } \\  \\  \bold{and} \\ \\    \bold{ \tan \theta =  \frac{cp - ar}{aq - bp} }

 \bold{so \: that..   \:  \: \:  {\sec}^{2}  \theta -  { \tan}^{2} \theta = 1}

  \bold{\implies { (\frac{br - cq}{aq - bp}) }^{2}  -  { (\frac{cp - ar}{aq - bp} )}^{2}  = 1}

  \bold{\implies {(br - cq)}^{2}  -  {(cp - ar)}^{2}}   = \\  \bold{  {(aq - bp)}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bold{hence, \: proved..}

Similar questions