Science, asked by thapaavinitika6765, 9 months ago

implicit\:derivative\:\frac{dy}{dx},\:\left(x-y\right)^2=x+y-1

solve, #Fan of RockstarPratheek.






Follow him for more points

Answers

Answered by Anonymous
4

\mathrm{Implicit\:Derivative\:}\frac{dy}{dx}\mathrm{\:of\:}\left(x-y\right)^2=x+y-1:\quad \frac{1-2x+2y}{-2x+2y-1}

\left(x-y\right)^2=x+y-1

\mathrm{Treat\:}y\mathrm{\:as\:}y\left(x\right)

\mathrm{Differentiate\:both\:sides}:\quad 2\left(x-y\right)\left(1-\frac{d}{dx}\left(y\right)\right)=\frac{d}{dx}\left(y\right)+1

2\left(x-y\right)\left(1-\frac{d}{dx}\left(y\right)\right)=\frac{d}{dx}\left(y\right)+1

\mathrm{Isolate}\:\frac{d}{dx}\left(y\right):\quad \frac{d}{dx}\left(y\right)=\frac{1-2x+2y}{-2x+2y-1}

\frac{d}{dx}\left(y\right)=\frac{1-2x+2y}{-2x+2y-1}

Answered by sgege
0
  • To Implicitly derive a function (useful when a function can't easily be solved for y) Differentiate with respect to x. Collect all the dy/dx on one side. Solve for dy/dx.
  • To derive an inverse function, restate it without the inverse then use Implicit differentiation.

\mathrm{Implicit\:Derivative\:}\frac{dy}{dx}\mathrm{\:of\:}\left(x-y\right)^2=x+y-1:\quad \frac{1-2x+2y}{-2x+2y-1}

Similar questions