Math, asked by sanjaypandit748830, 3 months ago



 \implies \sf \: X + Y + X - Y =   \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} +  \begin{bmatrix} \sf \: 3& \sf \: 0 \\  \sf \:  - 1& \sf \: 1 \end{bmatrix} \\  \\  \\ \implies \sf \:2X =  \begin{bmatrix} \sf \: 1 + 3& \sf \:   2  + 0\\  \sf \: 1 - 1& \sf \: 1 + 1 \end{bmatrix} \\  \\  \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \:   2  \\  \sf \: 0& \sf \: 2\end{bmatrix} \\  \\  \\ \implies \sf \: X =  \begin{bmatrix} \sf \:  \frac{4}{2} & \sf \:    \frac{2}{2}   \\ \\   \sf \:  \frac{0}{2} & \sf \:  \frac{2}{2} \end{bmatrix} \\  \\  \\  \sf \implies  \blue{X = \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix}}
Substitute the value of X in equation (1).

 \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} \\  \\  \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} - \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix} \\  \\  \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 - 2& \sf \: 2 - 1 \\  \sf \: 1 - 0& \sf \: 1 - 1 \end{bmatrix} \\  \\  \\ \implies \sf \blue{ \:Y =\begin{bmatrix} \sf \: -  1 & \sf \:  1 \\  \sf \: 1 & \sf \: 0 \end{bmatrix}}

Answers

Answered by lava2007
2

Answer:

a system of government by the whole population or all the eligible members of a state, typically through elected representatives.

Answered by spyXsenorita
4

 \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} - \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 - 2& \sf \: 2 - 1 \\ \sf \: 1 - 0& \sf \: 1 - 1 \end{bmatrix} \\ \\ \\ \implies \sf \blue{ \:Y =\begin{bmatrix} \sf \: - 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}

Similar questions