Math, asked by abhinavkr01, 5 hours ago


\int _ { - 2 } ^ { 2 } | 1 - x ^ { 2 } | d x
Please Solve It...​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int_{-2}^{2}  |1 -  {x}^{2} |  \: dx}

Let we first define the function.

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: when \:x \:  <  \: 0 } \\ &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, using this definition, Let define the given function.

\red{\rm :\longmapsto\: |1 -  {x}^{2} |  =  |(1 - x)(1 + x)|}

So, critical points are - 1 and 1.

Thus,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |(1 - x)(1 + x)|  = \begin{cases} &\sf{  - (1 - x)(1 + x)\: when \: - 2 \leqslant x  \leqslant  - 1 }  \\ \\ &\sf{ (1 - x)(1 + x) \: when \:  - 1 \leqslant x \leqslant 1 } \\ \\ &\sf{ - (1 - x)(1 + x) \: when \: 1 \leqslant x \leqslant 2 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |1 -  {x}^{2} |  = \begin{cases} &\sf{  - (1 -  {x}^{2}) \: when \: - 2 \leqslant x  \leqslant  - 1 }  \\ \\ &\sf{ 1 -  {x}^{2}   \: when \:  - 1 \leqslant x \leqslant 1 } \\ \\ &\sf{ - (1 -  {x}^{2})  \: when \: 1 \leqslant x \leqslant 2 } \end{cases}\end{gathered}\end{gathered}

Hence,

\red{\rm :\longmapsto\:\displaystyle\int_{-2}^{2}  |1 -  {x}^{2} |  \: dx}

can be rewritten as

\rm \:  =\displaystyle\int_{-2}^{ - 1}  |1 -  {x}^{2} | dx + \displaystyle\int_{-1}^{1}  |1 -  {x}^{2} | dx + \displaystyle\int_{1}^{2}  |1 -  {x}^{2} |  dx

\rm \:  = - \displaystyle\int_{-2}^{ - 1}  (1 -  {x}^{2}) dx   + \displaystyle\int_{-1}^{1} (1 -  {x}^{2})dx  -  \displaystyle\int_{1}^{2}(1 -  {x}^{2})dx

We know,

 \boxed{ \bf{ \: \displaystyle\int \: kdx \:  =  \: kx \:  +  \: c}}

and

 \boxed{ \bf{ \: \displaystyle\int \:  {x}^{n} dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  \:  +  \: c}}

So, using this, we get

\rm \:  =   - \:\bigg[x - \dfrac{ {x}^{3} }{3} \bigg]^{ - 1}_{ - 2}   +   \:\bigg[x - \dfrac{ {x}^{3} }{3} \bigg]^{1}_{ - 1}  -  \:\bigg[x - \dfrac{ {x}^{3} }{3} \bigg]^{2}_{1}

\rm \:  =  -  \:\bigg[( - 1 + 2) - \dfrac{ - 1 + 8 }{3} \bigg]   +   \:\bigg[(1 + 1) - \dfrac{ 1 + 1 }{3} \bigg]  -  \:\bigg[(2 - 1) - \dfrac{8 - 1 }{3} \bigg]

\rm \:  =  -  \:\bigg[1- \dfrac{7}{3} \bigg]   +   \:\bigg[2 - \dfrac{2}{3} \bigg]  -  \:\bigg[1 - \dfrac{7}{3} \bigg]

\rm \:  =   - \:\bigg[\dfrac{3 - 7}{3} \bigg]   +  \:\bigg[\dfrac{6 - 2}{3} \bigg]  -  \:\bigg[\dfrac{3 - 7}{3} \bigg]

 \rm \:  =  \:  \dfrac{4}{3}  +\dfrac{4}{3}  + \dfrac{4}{3}

 \rm \:  =  \:  \dfrac{12}{3}

\rm \:  =  \: 4

Hence,

\red{\rm :\longmapsto\:\displaystyle\int_{-2}^{2}  |1 -  {x}^{2} |  \: dx =  \:   \: 4}

Similar questions