Math, asked by elinorandrea7, 1 day ago

\int_2^4\dfrac{logx^{2}}{logx^{2}+log(x^{2}-12x+36)} dx

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{2}^{4}\rm  \frac{log {x}^{2} }{log {x}^{2}  + log( {x}^{2}  - 12x + 36)}  \: dx \\

Let assume that

\rm \: I \:  =  \: \displaystyle\int_{2}^{4}\rm  \frac{log {x}^{2} }{log {x}^{2}  + log( {x}^{2}  - 12x + 36)}  \: dx \\

can be rewritten as

\rm \: I \:  =  \: \displaystyle\int_{2}^{4}\rm  \frac{log {x}^{2} }{log {x}^{2}  + log {(x - 6)}^{2} }  \: dx  -  -  - (1)\\

We know,

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x)dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(a + b - x)dx \: }} \\

So, using this property, we get

\rm \: I \:  =  \: \displaystyle\int_{2}^{4}\rm  \frac{log {(2 + 4 - x)}^{2} }{log {(2 + 4 - x)}^{2}  + log {(6 - 2 - 4 + x)}^{2} }  \: dx \\

\rm \: I \:  =  \: \displaystyle\int_{2}^{4}\rm  \frac{log {(6- x)}^{2} }{log {(6- x)}^{2}  + log {x}^{2} }  \: dx -  -  - (2) \\

On adding equation (1) and (2), we get

\rm \: 2I \:  =  \: \displaystyle\int_{2}^{4}\rm  \frac{log {x}^{2} +  log {(6- x)}^{2} }{log {(6- x)}^{2}  + log {x}^{2} }  \: dx  \\

\rm \: 2I \:  =  \: \displaystyle\int_{2}^{4}\rm  1  \: dx  \\

\rm \: 2I \:  =  \: \bigg(x\bigg) _{2}^{4}\\

\rm \: 2I \:  =  \: 4 - 2\\

\rm \: 2I \:  =  \: 2\\

\rm\implies \:I = 1 \\

Hence,

\rm\implies \boxed{\rm{\displaystyle\int_{2}^{4}\rm  \frac{log {x}^{2} }{log {x}^{2}  + log( {x}^{2}  - 12x + 36)}dx = 1 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x)dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(y)dy \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x)dx \:  =  \: -  \:  \displaystyle\int_{b}^{a}\rm f(x)dx \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{a}\rm f(x)dx \:  =  \: \displaystyle\int_{0}^{a}\rm f(a - x)dx \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a}\rm f(x)dx \:  =  \:2 \displaystyle\int_{0}^{a}\rm f(x)dx  \: \: if \: f( - x) = f(x)}} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^{a}\rm f(x)dx \:  =  \:0  \: \: if \: f( - x) =  -  \:   f(x)}} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \:0  \: \: if \: f(2a - x) =  -  \:   f(x)}} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \:2\displaystyle\int_{0}^{a}\rm f(x)dx \: \: if \: f(2a - x) =\:   f(x)}} \\

Answered by talpadadilip417
7

Question :-

 \\  \rm\int_2^4\dfrac{logx^{2}}{logx^{2}+log(x^{2}-12x+36)} \:  \:  dx

 \rule{300pt}{0.1pt}

\color{violet} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

\[ \begin{array}{l}  \displaystyle\rm  I=\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x \\\\  \\  \displaystyle\rm I=\frac{2}{2} \int_{2}^{4} \frac{\log x}{\log x+\log (6-x)} d x \\\\  \\  \displaystyle\rm I=\int_{2}^{4} \frac{\log (6-x)}{\log (6-x)+\log x} d x \qquad \qquad\left\{\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right\} \end{array} \]

Adding (i) and (ii)

 \begin{array}{l} \displaystyle\   \rm\[ 2 I=\int_{2}^{4} \frac{\log x+\log (6-x)}{\log x+\log (6-x)} d x \\  \\ \displaystyle \rm 2 I=\int_{2}^{4}1   d x \\  \\   \pmb{\rm 2 I=2  }\] \end{array}

Hence, I = 1

Similar questions