Math, asked by vidhikparmar, 1 month ago

\int \frac{1}{\left(x-1\right)\sqrt{x^2-1}}dx

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf \frac{1}{\left(x-1\right)\sqrt{x^2-1}}dx

To integrate such integrals, we use method of Substitution,

\rm :\longmapsto\:Put \: x - 1 = \dfrac{1}{y}

\rm :\longmapsto\: \: x  = \dfrac{1}{y} + 1

\rm :\longmapsto\: \: dx  =  - \dfrac{1}{ {y}^{2} }dy

On substituting all these values in above integral, we get

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{1}{ \dfrac{1}{y}  \sqrt{ {\bigg(\dfrac{1}{y}  + 1\bigg) }^{2}  - 1} }  \times \dfrac{ - 1}{ {y}^{2} } \: dy

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{1}{   \sqrt{ {\bigg(\dfrac{1}{y} \bigg) }^{2}  + 1 + \dfrac{2}{y}  - 1} }  \times \dfrac{ - 1}{ {y}^{} } \: dy

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{1}{   \sqrt{ {\bigg(\dfrac{1}{y} \bigg) }^{2} + \dfrac{2}{y}} }  \times \dfrac{ - 1}{ {y}^{} } \: dy

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{1}{\sqrt{ \dfrac{1}{ {y}^{2} }  + \dfrac{2}{y}} }  \times \dfrac{ - 1}{ {y}^{} } \: dy

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{1}{\sqrt{ \dfrac{1 + 2y}{ {y}^{2} } } }  \times \dfrac{ - 1}{ {y}^{} } \: dy

\rm \:  =  \:  \: \displaystyle\int\sf  \frac{y}{ \sqrt{1 + 2y} }  \times \dfrac{ - 1}{ {y}^{} } \: dy

\rm \:  =  \:  -  \: \displaystyle\int\sf  \frac{1}{ \sqrt{1 + 2y} }   \: dy

\rm \:  =  \: -   \:  \displaystyle\int\sf  {\bigg(1 + 2y\bigg) }^{ - \dfrac{1}{2} }  \: dy

\rm \:  =  \: -   \:  \dfrac{ {\bigg(1 + 2y\bigg) }^{ - \dfrac{1}{2} + 1 } }{ - \dfrac{1}{2}  + 1}  \times \dfrac{1}{2}  + c

\boxed{ \:  \:  \:  \:  \because \:  \bf{ \: \displaystyle\int\sf  {(ax + b)}^{n} =  \frac{ {(ax + b)}^{n + 1} }{a(n + 1)} + c \:  \:  \:  \:  \: }}

\rm \:  =  \: -   \:  \dfrac{ {\bigg(1 + 2y\bigg) }^{\dfrac{1}{2}} }{\dfrac{1}{2}}  \times \dfrac{1}{2}  + c

\rm \:  =  \:  \:  -  \:  \sqrt{1 + 2y}  + c

\rm \:  =  \:  \:  -  \:  \sqrt{1 + 2 \times \dfrac{1}{x - 1} }  + c

\rm \:  =  \:  \:  -  \:  \sqrt{1 + \dfrac{2}{x - 1} }  + c

\rm \:  =  \:  \:  -  \:  \sqrt{\dfrac{x - 1 + 2}{x - 1} }  + c

\rm \:  =  \:  \:  -  \:  \sqrt{\dfrac{x + 1}{x - 1} }  + c

Additional Information :-

Methods to solve the integral of the form,

\boxed{ \bf{  \:  \:  \:  \:  \:  \: \: \displaystyle\int\bf  \frac{dx}{ \:  \: p \:  \:  \sqrt{q} \:  \:  } \:  \:  \:  \: }}

where,

\boxed{ \bf{ \: 1. p \:  is \:  linear,  \: q \:  is  \: linear,   \: Substitute  \:  \sqrt{q}  = t}}

\boxed{ \bf{ \: 2. p \:  is \:  quadratic,  \: q \:  is  \: linear,   \: Substitute  \:  \sqrt{q}  = t}}

\boxed{ \bf{ \: 3. p \:  is \:  linear,  \: q \:  is  \: quadratic,   \: Substitute  \:  p  =  \frac{1}{t} }}

\boxed{ \bf{ \: 4. p \:  is \:  quadratic,  \: q \:  is  \: quadratic,   \: Substitute  \:  x  =  \frac{1}{t} }}

Similar questions