Math, asked by Anonymous, 10 months ago


 \int \frac{1}{ {sin}^{2}x + sin2x } dx \\  \\
give answer ..

Answers

Answered by kaushik05
24

 \huge \boxed{  \green{\mathfrak{solution}}}

To find:

 \int \:  \frac{1}{ {sin}^{2}x + sin2x } dx \\  \\

 \leadsto \int \frac{1}{ {sin}^{2}x + 2sinx \: cosx} dx \\  \\

Divide both numerator and denominator by cos^2x

 \leadsto \int \:  \frac{ \frac{1}{ {cos}^{2} x} }{ \frac{ {sin}^{2} x}{ {cos}^{2} x} +  \frac{2sinx \: cosx \: }{ {cos}^{2} x}  } dx \\  \\  \leadsto \int \:  \frac{ {sec}^{2}x }{ {tan}^{2}x + 2tanx }dx  \\  \\   \ \:

Now use substitution method ,

Let

tanx=t

=> sec^2dx =dt

 \leadsto \:  \int  \frac{dt}{ {t}^{2} + 2t }  \\  \\  \leadsto \int \:  \frac{dt}{t(t + 2)}

Now we have use partial fraction method :

  \rightarrow\frac{1}{t(t + 2)}  =  \frac{a}{t}  +  \frac{b}{t + 2}  \\  \\  \rightarrow \: a =  \frac{1}{0 + 2}  =  \frac{1}{2}  \\ and \:  \\   \\  \rightarrow \: b = -   \frac{1}{2}

Now put the value of a and b

 \leadsto \frac{1}{2}  \int ( \frac{1}{t}  -  \frac{1}{t + 2} )dt \\  \\  \leadsto \:  \frac{1}{2} ( log(t )-  log(t + 2) ) \\  \\  \leadsto \:  \frac{1}{2}  log( \frac{tanx}{tan(x + 2)} )

Formula used :

 \boxed{ \bold{ \blue{ \int  \frac{1}{x} dx =  log(x) }}}

 \boxed{ \blue{ \bold{ \frac{d}{dx} tanx =  {sec}^{2 \: } x}}}


Anonymous: Awesome
kaushik05: thnku
Similar questions