Math, asked by gayatrikgs2005, 28 days ago

\int\ {\frac{1}{sinx+cos} } \, dx

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\displaystyle\rm{\int\dfrac{1}{sin(x)+cos(x)}\,dx}

\displaystyle\rm{=\int\dfrac{1}{\sqrt{2}\left\{\dfrac{1}{\sqrt{2}}\cdot\,sin(x)+\dfrac{1}{\sqrt{2}}\cdot\,cos(x)\right\}}\,dx}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\int\dfrac{1}{cos(x)\cdot\,cos\left(\dfrac{\pi}{4}\right)+sin\left(\dfrac{\pi}{4}\right)\cdot\,sin(x)}\,dx}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\int\dfrac{1}{cos\left(x-\dfrac{\pi}{4}\right)}\,dx}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\int\,sec\left(x-\dfrac{\pi}{4}\right)\,dx}

We know,

\boxed{\displaystyle\green{\sf{\int\,sec(x)\,dx=\ln\left|tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)\right|+C}}}

So,

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\ln\left|tan\left\{\dfrac{1}{2}\left(x-\dfrac{\pi}{4}\right)+\dfrac{\pi}{4}\right\}\right|+C}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\ln\left|tan\left(\dfrac{x}{2}-\dfrac{\pi}{8}+\dfrac{\pi}{4}\right)\right|+C}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\ln\left|tan\left(\dfrac{x}{2}+\dfrac{\pi}{4}-\dfrac{\pi}{8}\right)\right|+C}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\ln\left|tan\left(\dfrac{x}{2}+\dfrac{2\pi-\pi}{8}\right)\right|+C}

\displaystyle\rm{=\dfrac{1}{\sqrt{2}}\ln\left|tan\left(\dfrac{x}{2}+\dfrac{\pi}{8}\right)\right|+C}

Similar questions