Math, asked by ayushgupta2906, 1 year ago

\int \frac{dx}{e^ x+e^{-x}} \, dx is equal to,
(A) tan^{-1} (e^x) + C
(B) tan^{-1} (e^{-x}) + C
(C) log (e^x - e^{-x}) + C
(D) log (e^x + e^{-x}) + C

Answers

Answered by waqarsd
1

check the attachment

Attachments:
Answered by hukam0685
0

Answer:

Option B is correct.

Step-by-step explanation:

To integrate the function

\int \frac{dx}{e^ x+e^{-x}} \, dx

\int \frac{1}{e^ x+e^{-x}} \, dx  \\  \\ \int \frac{1}{e^ x+ \frac{1}{ {e}^{x} }} \, dx \\  \\ \int \frac{1}{ \frac{ {e}^{2x}  + 1}{ {e}^{x} }} \, dx \\  \\ \int \frac{ {e}^{x} }{e^ {2x}+1} \, dx \\  \\ put \:  {e}^{x}  = t \\  \\  {e}^{x} dx = dt \\  \\ substitute \: these \: values \\  \\ \int \frac{ 1 }{t^ {2}+1} \, dt \\  \\  \because \:  \int \:  \frac{1}{ {x}^{2}  + 1} dx = tan ^{ - 1} \: x + C \\  \\ so \\  \\ \int \frac{ 1 }{t^ {2}+1} \, dt  = tan ^{ - 1} \: t + C \\  \\ \int \frac{1}{e^ x+e^{-x}} \, dx = tan ^{ - 1} \:  {e}^{x} + C \\  \\

Option B is correct.

Hope it helps you.

Similar questions