Math, asked by Anonymous, 3 months ago

\int\frac{dx}{sin^2{(x)}cos^2{(x)}}\\ \\

no spam

Answers

Answered by TheValkyrie
5

Answer:

\sf I=tan\:x-cot\:x+C

Step-by-step explanation:

Given:

\sf \dfrac{1}{sin^2x\:cos^2x}

To Find:

\displaystyle \sf \int\limits {\dfrac{1}{sin^2x\:cos^2x} } \, dx

Solution:

We know that,

sin²x + cos²x = 1

Hence,

\displaystyle \sf \int\limits {\dfrac{1}{sin^2x\:cos^2x} } \, dx=\int\limits {\dfrac{sin^2x+cos^2x}{sin^2x\:cos^2x} } \, dx

Now splitting the integral,

\implies \displaystyle \sf \int\limits {\dfrac{sin^2x}{sin^2x\:cos^2x} } \, dx +\int\limits {\dfrac{cos^2x}{sin^2x\:cos^2x} } \, dx

\implies \displaystyle \sf \int\limits {\dfrac{1}{cos^2x} } \, dx +\int\limits {\dfrac{1}{sin^2x} } \, dx

\implies \displaystyle \sf \int\limits {sec^2x} \, dx +\int\limits {cosec^2x} \, dx

We know that,

\displaystyle \sf \int\limits {sec^2x} \, dx =tan\:x+C

\displaystyle \sf \int\limits {cosec^2x} \, dx=-cot\:x+C

Substituting it we get,

\sf \implies tan\:x-cot\:x+C

This is the required integral.

Similar questions