Math, asked by kaish2281, 1 year ago

\int\frac{dx}{\sqrt{9x-4x^2}} equals
(A) \frac19 \ sin^{-1} \bigg\lgroup \frac{9x -8}{8}\bigg\rgroup+ C
(B) \frac12 \ sin^{-1} \bigg\lgroup \frac{8x -9}{9}\bigg\rgroup+ C
(C) \frac13 \ sin^{-1} \bigg\lgroup \frac{9x -8}{8}\bigg\rgroup+ C
(D) \frac12 \ sin^{-1} \bigg\lgroup \frac{9x -8}{8}\bigg\rgroup+ C

Answers

Answered by Anonymous
0

Answer:

B

Step-by-step explanation:

\displaystyle\int\frac{dx}{\sqrt{9x-4x^2}}\\ \\ \\= \tfrac12 \int\frac{dx}{\sqrt{\frac94x - x^2}}\\ \\ \\= \tfrac12 \int\frac{dx}{\sqrt{(\frac98)^2 - (x-\frac98)^2}}\\ \\ \\= \tfrac12 \sin^{-1}\left(\frac{x-\frac98}{\frac98}\right) + C\\ \\ \\= \tfrac12 \sin^{-1}\left(\frac{8x-9}{9}\right) + C


Anonymous: Hope this helps. Plzzz mark it Brainliest. All the best!!!
Similar questions