Math, asked by Anonymous, 1 year ago


 \int \:  \frac{ { \sec}^{2}(x )}{ \tan(x) } dx \\  \\
integration .....​

Answers

Answered by kaushik05
68

  \huge \boxed{ \red{\mathfrak{solution}}}

 \int \:  \frac{ \sec^{2}x }{tanx} dx \\  \\

Here we use substitution method :

Let tanx = t

=> sec^2x dx = dt

put

sec^2x= dt

and

tanx= t

in Given question

  \rightarrow\int \frac{dt}{t}  \\  \\  \rightarrow \:  log(t)

Now put the value of t = tanx

 \rightarrow \: log(tanx) + c

Formula used :

  \boxed{ \green{ \bold{\frac{d}{dx} tanx =  {sec}^{2} x}}}

and

 \boxed{ \purple{ \bold{\int \:  \frac{1}{x}  =  log(x) }}}

Answered by Anonymous
9

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

Here we use substitution method :

Let tanx = t

=> sec^2x dx = dt

put

sec^2x= dt

and

tanx= t

in Given question

\rightarrow\int \frac{dt}{t} \\ \\ \rightarrow \: log(t)

Now put the value of t = tanx

\rightarrow \: log(tanx) + c

Formula used :

\boxed{ \green{ \bold{\frac{d}{dx} tanx = {sec}^{2} x}}}

and

\boxed{ \purple{ \bold{\int \: \frac{1}{x} = log(x) }}}

Similar questions