Math, asked by PragyaTbia, 1 year ago

\int\frac{x\ dx}{x(x^2 +1)} equals
(A)\log \arrowvert x \arrowvert - \frac12 \ log(x^2 +1) + C
(B)\log \arrowvert x \arrowvert + \frac12 \ log(x^2 +1) + C
(C)-\log \arrowvert x \arrowvert + \frac12 \ log(x^2 +1) + C
(D)\frac 12 \log \arrowvert x \arrowvert + \frac12 \ log(x^2 +1) + C

Answers

Answered by Swarup1998
3

Answer:

    Option (A) is correct.

Solution:

Now, \int \frac{dx}{x(x^{2}+1)}

    = \int (\frac{1}{x}-\frac{x}{x^{2}+1})dx

    = \int \frac{dx}{x}-\int \frac{x\:dx}{x^{2}+1}

    = \int \frac{dx}{x}-\frac{1}{2}\int \frac{2x\:dx}{x^{2}+1}

    = \int \frac{dx}{x}-\frac{1}{2}\int \frac{d(x^{2}+1)}{x^{2}+1}

    = log|x|-\frac{1}{2}log(x^{2}+1)+C

where C is constant of integration

Therefore, the required integral is

    log|x|-\frac{1}{2}log(x^{2}+1)+C

Rule:

    \int \frac{dx}{x}=log|x|+C

where C is constant of integration

Similar questions