Math, asked by kaushik05, 11 months ago


 \int \limits_{0}^{\pi} \: x \:  log  \: sinx \: dx \\
solve this .​

Answers

Answered by ShivajiMaharaj45
5

Step-by-step explanation:

\sf I = \int\limits_{0}^{\pi}\:x\:log\:sinx\:dx ... ( 1 )

\\

\sf I = \int\limits_{0}^{\pi}\:( \pi - x ) \:log \:sin ( \pi - x ) dx

\\

\therefore \sf I = \int\limits_{0}^{\pi}\:( \pi - x ) \:log \:sin x dx ... ( 2 )

\\

\sf adding \:equations\:(1)\:and\:( 2 ) </p><p></p><p></p><p>[tex]\\

\therefore \sf 2I = \int\limits_{0}^{\pi}\:( \pi - x ) \:log \:sin x + x log sinx dx

\\

\therefore\sf2I = \int\limits_{0}^{\pi}\: \pi \: log sinx dx

\\

\therefore\sf2I =2\pi \int\limits_{0}^{\frac {\pi}{2}} log sinx dx

\\

\therefore\sf I = \pi ( -  \frac {\pi}{2} log 2 )

\\

\therefore\sf I = -  \frac {{\pi}^{2}}{2} log 2

THANKS!!!

Answered by TheLifeRacer
6

Answer:

-π²/2Log2

Step-by-step explanation:

Solution is in his given attachment !

____________________________________

Hope it's helpful

Attachments:
Similar questions