Math, asked by TbiaSupreme, 1 year ago

 \int\limits^1_0 dx/x²+x+1 ,Evaluate the given integral expression:

Answers

Answered by rohitkumargupta
5
HELLO DEAR,

GIVEN:-
\sf{\int\limits^1_0 dx/(x^2 + x + 1)}

\sf{\implies \int\limits^1_0 dx/[x^2 + x + (1/4) - (1/4) + 1]}

\sf{\implies \int\limits^1_0 dx/[(x + 1/2)^2 + 3/4]}

\sf{\implies [\frac{1}{\frac{\sqrt{3}}{2}}tan^{-1}(\frac{2x + 1}{\sqrt{3}})]^1_0}

\sf{\implies \frac{1}{\frac{\sqrt{3}}{2}}*[tan^{-1}(\sqrt{3}) - tan^{-1}(1/\sqrt{3})]}

\sf{\implies \frac{2}{\sqrt{3}}[\pi/3 - \pi/6]}

\sf{\implies \frac{\pi}{3\sqrt{3}}}

I HOPE ITS HELP YOU DEAR,
THANKS

abhi178: dud plz correct your answer
abhi178: Integration of 1/(x2 + a²) = 1/atan^-1x/a
abhi178: it seems you use 1/2a tan^-1x/a
rohitkumargupta: do provide edit option
rohitkumargupta: if u think in any other answers have some error feel free to provide edit option
abhi178: :)
rohitkumargupta: now it's correct
rohitkumargupta: thanks
Answered by abhi178
3
we have to find the value of \int\limits^1_0{\frac{1}{x^2+x+1}}\,dx

first of all, we have to resolve x² + x + 1.
x² + x + 1 = x² + x + 1/4 + 3/4
= x² +2.1/2.x + (1/2)² + (√3/2)²
= (x + 1/2)² + (√3/2)²

now, 1/(x² + x + 1) = 1/{(x + 1/2)² + (√3/2)²}

so, \int\limits^1_0{\frac{1}{(x+1/2)^2+(\sqrt{3}/2)^2}}\,dx

now, use the formula,
\int{\frac{1}{x^2+a^2}}\,dx=\frac{1}{a}tan^{-1}\frac{x}{a}

so, =\left[\begin{array}{c}\frac{2}{\sqrt{3}}tan^{-1}\frac{x+1/2}{\sqrt{3}/2}\end{array}\right]^1_0

=\frac{2}{\sqrt{3}}[tan^{-1}\sqrt{3}-tan^{-1}\frac{1}{\sqrt{3}}]

=\frac{2}{\sqrt{3}}[\frac{\pi}{3}-\frac{\pi}{6}]

=\frac{\pi}{3\sqrt{3}}
Similar questions
Math, 1 year ago