Math, asked by elinorandrea7, 1 day ago

\int\limits^2_0[x] \, dx where [.] represents greatest integer function of x

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_0^2\rm [x] \: dx \\

can be rewritten as

\rm \:  =  \: \displaystyle\int_0^1\rm [x] \: dx + \displaystyle\int_1^2\rm [x] \: dx \\

We know,

\boxed{ \rm{ \:[x] = 0 \:  \:  \:  \: if \: x \:  \in \: [0,1) \: }} \\

and

\boxed{ \rm{ \:[x] = 1 \:  \:  \:  \: if \: x \:  \in \: [1,2) \: }} \\

So, using this, above integral can be rewritten as

\rm \:  =  \: \displaystyle\int_0^1\rm 0 \: dx + \displaystyle\int_1^2\rm 1 \: dx \\

\rm \:  =  \: 0 + \bigg[x\bigg]_1^2 \\

\rm \:  =  \: 2 - 1 \\

\rm \:  =  \: 1 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_0^2\rm [x] \: dx \:  =  \: 1 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\int_a^b\rm f(x)dx \:  =  \: \displaystyle\int_a^b\rm f(y)dy \: }} \\

\boxed{ \rm{ \:\displaystyle\int_a^b\rm f(x)dx \:  =  \:  -  \: \displaystyle\int_b^a\rm f(x)dx \: }} \\

\boxed{ \rm{ \:\displaystyle\int_a^b\rm f(x)dx = \displaystyle\int_a^b\rm f(a + b - x)dx \: }} \\

\boxed{ \rm{ \:\displaystyle\int_0^a\rm f(x)dx \:  =  \: \displaystyle\int_0^a\rm f(a - x)dx \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^a\rm f(x)dx \:  =  \:2 \displaystyle\int_0^a\rm f(x)dx \: \: if \: f( - x) = f(x) }} \\

\boxed{ \rm{ \:\displaystyle\int_{ - a}^a\rm f(x)dx \:  =  \:0 \: \: if \: f( - x) = -  \:  f(x) }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \:0 \: \: if \: f(2a - x) = -  \:  f(x) }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x)dx \:  =  \:\displaystyle\int_0^a\rm f(x)dx \: \: if \: f(2a - x) = f(x) }} \\

Answered by Talpadadilip783
4

Step-by-step explanation:

Let,

 \displaystyle\rm I=\int \limits_{0}^{2}\left[x\right] d x .

Now

\displaystyle \text{Let }\rm I=\int_{0}^{2}[x] d x=\int_{0}^{1}[x] d x+\int_{1}^{2}[x] d x

  \\ \displaystyle \rm=\int_{0}^{1} 0 d x+\int_{1}^{2} 1 d x

 \\ \rm  \bigg[\because[x]=  \rm \left\{\begin{array}{l}0,0 \leq x<1 \\ 1,1 \leq x<2\end{array}\right]

 \begin{array}{l}\rm =0+(x)_{1}^{2}=2-1=1 \\ \\ \boxed{\color{orangered}\displaystyle \rm\therefore \int_{0}^{2}[x] d x=1} \end{array}

Similar questions