Math, asked by TbiaSupreme, 1 year ago

 \int\limits^2_1 3ˣ dx,Obtain the given integrals as the limit of a sum.

Answers

Answered by rohitkumargupta
3
HELLO DEAR,


\sf{\int\limits^2_1 3^x\,dx}

we know if the integral is in the form of a^x then it's integral is a^x/loga


so, \sf{\int\limits^2_1 3^x\,dx = [3^x/log3]^2_1}

\sf{[3^2/log3 - 3^1/log3]}

\sf{[9/log3 - 3/log3]}

\sf{6/log3}


I HOPE ITS HELP YOU DEAR,
THANKS
Answered by abhi178
0
we have to obtain the given integral as the limits of a sum.
we know, if \int\limits^b_a{f(x)}\,dx is given then, it equals to,
=(b-a)\displaystyle\lim_{n\to \infty}\frac{1}{n}[f(a)+f(a+h)+f(a+2h)+......f\{a+(n-1)h\}]
where h = (b - a)/n

Here, b = 2 and a = 1
so, h = (2 - 1)/n = 1/n

now, f(x) = 3^x
f(a) = f(1) = 3
f(a + h) = f(1 + h) = 3^(1 + h) = 3^(1 + 1/n) = 3.3^1/n
f(a + 2h) = f(1 + 2h) = 3^(1 + 2h) = 3^(1 + 2/n) = 3.3^2/n
.......................
..................................
f[a + (n - 1)h] = f[1 + (n -1)h] = 3^{1 + (n - 1)h} = 3^{1 + (n - 1)/n} = 3.3^(n-1)/n

so, f(1) + f(1 + h) + f(1 + 2h) + f(1 + 2h) + f(1 + 3h)......... + f[1 + (n - 1)h] = 3 + 3.3^1/n + 3.3^2/n + ....3.3^(n-1)/n
= 3[1 + 3^1/n + 3^2/n + 3^3/n +..... + 3^(n-1)/n]
= 3[(3^1/n)^n - 1]/(3^1/n - 1)]
= 6/(3^1/n - 1)

now, \int\limits^2_1=(2-1)\lim_{n\to \infty}\frac{1}{n}\frac{6}{3^{1/n}-1}

= \lim_{n\to \infty}6\frac{\frac{1}{n}}{3^{1/n}-1}

= \frac{6}{ln3}
Similar questions
Math, 1 year ago
Math, 1 year ago