Answers
Answered by
3
HELLO DEAR,
we know if the integral is in the form of a^x then it's integral is a^x/loga
so,
I HOPE ITS HELP YOU DEAR,
THANKS
we know if the integral is in the form of a^x then it's integral is a^x/loga
so,
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
0
we have to obtain the given integral as the limits of a sum.
we know, if is given then, it equals to,
where h = (b - a)/n
Here, b = 2 and a = 1
so, h = (2 - 1)/n = 1/n
now, f(x) = 3^x
f(a) = f(1) = 3
f(a + h) = f(1 + h) = 3^(1 + h) = 3^(1 + 1/n) = 3.3^1/n
f(a + 2h) = f(1 + 2h) = 3^(1 + 2h) = 3^(1 + 2/n) = 3.3^2/n
.......................
..................................
f[a + (n - 1)h] = f[1 + (n -1)h] = 3^{1 + (n - 1)h} = 3^{1 + (n - 1)/n} = 3.3^(n-1)/n
so, f(1) + f(1 + h) + f(1 + 2h) + f(1 + 2h) + f(1 + 3h)......... + f[1 + (n - 1)h] = 3 + 3.3^1/n + 3.3^2/n + ....3.3^(n-1)/n
= 3[1 + 3^1/n + 3^2/n + 3^3/n +..... + 3^(n-1)/n]
= 3[(3^1/n)^n - 1]/(3^1/n - 1)]
= 6/(3^1/n - 1)
now,
=
=
we know, if is given then, it equals to,
where h = (b - a)/n
Here, b = 2 and a = 1
so, h = (2 - 1)/n = 1/n
now, f(x) = 3^x
f(a) = f(1) = 3
f(a + h) = f(1 + h) = 3^(1 + h) = 3^(1 + 1/n) = 3.3^1/n
f(a + 2h) = f(1 + 2h) = 3^(1 + 2h) = 3^(1 + 2/n) = 3.3^2/n
.......................
..................................
f[a + (n - 1)h] = f[1 + (n -1)h] = 3^{1 + (n - 1)h} = 3^{1 + (n - 1)/n} = 3.3^(n-1)/n
so, f(1) + f(1 + h) + f(1 + 2h) + f(1 + 2h) + f(1 + 3h)......... + f[1 + (n - 1)h] = 3 + 3.3^1/n + 3.3^2/n + ....3.3^(n-1)/n
= 3[1 + 3^1/n + 3^2/n + 3^3/n +..... + 3^(n-1)/n]
= 3[(3^1/n)^n - 1]/(3^1/n - 1)]
= 6/(3^1/n - 1)
now,
=
=
Similar questions