Math, asked by Anonymous, 11 months ago

\int\limits^2_1 {3x^2 + 2x +1} \, dx

Answers

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\int\limits^2_1 ({3x^2 + 2x +1} )\, dx = 11}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies\int\limits^2_1 ({3x^2 + 2x +1} )\, dx \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt: \implies\int\limits^2_1 ({3x^2 + 2x +1} )\, dx  =?

• According to given question :

\tt: \implies\int\limits^2_1 ({3x^2 + 2x +1} )\, dx \\  \\ \tt: \implies \int\limits^2_1 \bigg(  \frac{3 {x}^{2 + 1}  }{2 + 1}  +  \frac{2 {x}^{1 + 1} }{1 + 1}  +  \frac{x}{1} \bigg)dx \\  \\ \tt: \implies   \bigg[\frac{3 {x}^{3} }{3}  +  \frac{2x^{2} }{2}  + x\bigg]^{2}_{1}\\  \\ \tt: \implies  \bigg[ {x}^{3}  +  {x}^{2}  + x\bigg]^{2}_{1} \\  \\ \tt: \implies  \bigg[({2}^{3}  +  {2}^{2}  + 2) -  ({1}^{3}  +  {1}^{2}   + 1)\bigg] \\  \\ \tt: \implies (8 + 4 + 2) - (1 + 1 + 1) \\  \\ \tt: \implies 14 - 3 \\  \\  \green{\tt: \implies 11} \\  \\   \green{\tt:  \implies\int\limits^2_1 ({3x^2 + 2x +1} )\, dx = 11}


BrainlyConqueror0901: thnx : )
Answered by AdorableMe
70

∫(3x² + 2x + 1) dx

By linearity,

= 3∫ x²dx + 2∫ x dx +∫1 dx

\rule{130}{1.4}

Solving ∫x²dx :-

Applying power rule :-

∫x²dx = x²⁺¹/2+1

⇒∫x²dx = x³/3

\rule{130}{1.4}

Solving ∫x dx :-

Applying power rule :-

∫x dx = x¹⁺¹/1 + 1

∫x dx = x²/2

\rule{130}{1.4}

Solving ∫1 dx :-

By constant rule,

∫1 dx = x

\rule{130}{1.4}

Now, putting the values in 3∫ x²dx + 2∫ x dx +∫1 dx :-

= 3(x³/3) + 2(x²/2) + x + C

= x³ + x² + x + C            

Now, putting the lower and the upper limits :-

\sf{[x^3+x^2+x]^2_1}

\sf{=(2^3+2^2+2)-(1^3+1^2+1)}\\\\\sf{=(8+4+2)-(1+1+1)}\\\\\sf{=14-3}\\\\\boxed{\sf{=11}}     ...ANSWER

\underline{\rule{200}{2}}

Note :--

  • A constant C is always added while doing integration.

BrainlyConqueror0901: well explained keep it up : )
Similar questions