Math, asked by TbiaSupreme, 1 year ago

 \int\limits^4_2(2x-1)dx ,Obtain the given integrals as the limit of a sum.

Answers

Answered by abhi178
4
we have to find the value of \int\limits^4_2{(2x-1)}\,dx

\int\limits^4_2{(2x-1)}\,dx

= \int\limits^4_2{2x}\,dx-\int\limits^4_2{dx}

= \left[\begin{array}{c}2\frac{x^2}{2}\end{array}\right]^4_2-[x]^4_2

=[x^2]^4_2-[x]^4_2

= (4^2-2^2)-(4-2)

= (16-4)-(2)

= 10
Answered by rohitkumargupta
6
HELLO DEAR,

GIVEN:-
\int\limits^4_2{(2x - 1)}\,dx

\int\limits^4_2\{{2x.dx - dx}\}

\bold{[2x^2/2 - x]^4_2}

\bold{[(4)^2 - (2)^2 - \{4 - 2\}]}

\bold{[16 - 4 - 2]}

\bold{\Rightarrow 10}

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions