Math, asked by kumarmrb1610, 1 year ago

\int x^2 e^{x^3}\, dx equals
(A)\frac 13 e^{x^3}+C
(B)\frac 13 e^{x^2}+C
(C)\frac 12 e^{x^3}+C
(D)\frac 12 e^{x^2}+C

Answers

Answered by waqarsd
1

check the attachment

Attachments:
Answered by hukam0685
0

Answer:

None of the option is correct

Step-by-step explanation:

To integrate

\int x^2 e^{x^3}\, dx

one can analyse that we can integrate it by substitution Method.

put \:  {x}^{3}  = z \\  \\ 3 {x}^{2} dx = dz \\  \\  {x}^{2} dx =  \frac{dz}{3}  \\  \\

Substitute these values into integration

  \int\frac{1}{3}  {e}^{z} dz \\  \\  \frac{1}{3}  \int {e}^{z} dz  \\  \\  \because \: \int {e}^{x} dx \:  =  {e}^{x}  + c \\  \\ so \\  \\  =  \frac{ {e}^{z} }{3}  + c \\  \\ undo \: substitution \\  \\  \int x^2 e^{x^3}\, dx=  \frac{ {e}^{ {x}^{3} } }{3}  + c \\  \\

Similar questions