Breakdown this integral into 2 or more than 2 integrals
No spams pls
Answers
First, calculate the corresponding indefinite integral: .
According to the Fundamental Theorem of Calculus, , so just evaluate the integral at the endpoints, and that's the answer.
∫0x+y2xdx
\int_{0}^{x + y}\left( 2 x \right)dx∫0x+y(2x)dx
First, calculate the corresponding indefinite integral: \int{2 x d x}=x^{2}∫2xdx=x2 .
According to the Fundamental Theorem of Calculus, \int_a^b F(x) dx=f(b)-f(a)∫abF(x)dx=f(b)−f(a) , so just evaluate the integral at the endpoints, and that's the answer.
\left(x^{2}\right)|_{\left(x=x + y\right)}=\left(x + y\right)^{2}(x2)∣(x=x+y)=(x+y)2
\left(x^{2}\right)|_{\left(x=0\right)} = 0(x2)∣(x=0)=0
\small{\int_{0}^{x + y}\left( 2 x \right)dx=\left(x^{2}\right)|_{\left(x=x + y\right)}-\left(x^{2}\right)|_{\left(x=0\right)}=\left(x + y\right)^{2}}∫0x+y(2x)dx=(x2)∣(x=x+y)−(x2)∣(x=0)=(x+y)2
\int_{0}^{x + y}\left( 2 x \right)dx=\left(x + y\right)^{2}∫0x+y(2x)dx=(x+y)2
- hope it will help uh!
- mark as brainlist!