Math, asked by masattarsunnyoyp7ov, 9 months ago


integral \: of \:  \frac{1}{x} \:  is \: \:  log(x)

why \: integral \: of \:  \frac{1}{x - 2}  \: is \: equal \: to \: log \: |  x - 2 |

Answers

Answered by hipsterizedoll410
4

Given:

\sf\displaystyle \int {\dfrac{1}{x} } \, dx=log(x)

To find:

\sf\displaystyle \int {\dfrac{1}{x-2} } \, dx

Explanation:

\sf Let \: x-2=t

\textsf{On differentiating both the sides, we get:}

\Rightarrow \sf d\dfrac{(x-2)}{dx}=\dfrac{dt}{dx}

\Rightarrow \sf d\dfrac{x}{dx}+ d\dfrac{2}{dx}=\dfrac{dt}{dx}

\Rightarrow \sf 1+0=\dfrac{dt}{dx}

\Rightarrow \sf 1=\dfrac{dt}{dx}

\Rightarrow \sf dx=1dt

\Rightarrow \sf dx=dt

\textsf{Substituting the value of x-2 in the question, we get:}

\Rightarrow\sf\displaystyle \int {\dfrac{1}{t } \, dt

\Rightarrow\sf log(u)+C

\textsf{On substituting the value of u, we get:}

\Rightarrow\sf log(x-2)+C

\Rightarrow\boxed{\sf log|x-2|+C}

Hence, the  ∫1/x-2 = log|x-2|+C where C is some constant.

Similar questions