Math, asked by shivam9534, 8 months ago


integrals \: of \: the \: question \:  \\ integrate \: it

Attachments:

Answers

Answered by allysia
1

Answer:

6( \frac{ {x}^{ \frac{1}{2} } }{ {3 } }   -  \frac{ {x}^{ \frac{1}{3} } }{2}  +  {x}^{ \frac{1}{6} }  -  log( | {x}^{ \frac{1}{6} } + 1| ) ) + c

Step-by-step explanation:

Let

x =  {t}^{6}

Then,

dx = 6 {t}^{5}

Now,

 \int \dfrac{1}{ {x}^{ \frac{1}{2} } +  {x}^{ \frac{1}{3} }  }  dx \\  = \int \dfrac{6 {t}^{5} }{ {t}^{3} +  {t}^{2}  } dt \\  =6 \int \dfrac{ {t}^{3} }{t + 1} dt

6\int \dfrac{ {t}^{3} + 1 - 1 }{t + 1} dt \\ 6(\int \dfrac{(t + 1)( {t}^{2}   -  t  + 1)}{t + 1}dt  - \int \dfrac{1}{t + 1} dt) \\  = 6(\int ({t}^{2}   - t + 1)dt - \int \dfrac{1}{t + 1} dt)

6( \frac{ {t}^{3} }{3}   -  \frac{ {t}^{2} }{2}  + t -  log( |t + 1| ) ) + c

Now plugging in the real value:

6( \frac{ {x}^{ \frac{1}{2} } }{ {3 } }   -  \frac{ {x}^{ \frac{1}{3} } }{2}  +  {x}^{ \frac{1}{6} }  -  log( | {x}^{ \frac{1}{6} } + 1| ) ) + c

Similar questions