Answers
Answered by
3
integration , {cosx/cos3x }
I = { cosx/cos3x }dx
= { cosx/( 4cos³x -3cosx )} dx
= { cosx/cosx ( 4cos²x -3) }dx
= dx/( 4cos²x -3)
= dx/( 4/sec²x -3)
= sec²x.dx /( 4 -3sec²x )
=sec²x.dx/{ 4 -3(1+tan²x)}
=sec²x.dx/( 1 -3tan²x )
let tanx = z
differentiate
sec²x.dx = dz
put this above ,
I = dz/( 1-3z²)
=dz/{ 1 -(√3z)²}
now use basic formula of integration ,
dx/( a² -x²) = 1/2a ln(a + x)/( a -x) + C
so, I = 1/2.1/√3 ln( 1+√3z )/( 1- √3z) + C
now , put z = tanx
so , I = 1/2√3.ln( 1+√3tanx)/( 1-√3tanx)
I = { cosx/cos3x }dx
= { cosx/( 4cos³x -3cosx )} dx
= { cosx/cosx ( 4cos²x -3) }dx
= dx/( 4cos²x -3)
= dx/( 4/sec²x -3)
= sec²x.dx /( 4 -3sec²x )
=sec²x.dx/{ 4 -3(1+tan²x)}
=sec²x.dx/( 1 -3tan²x )
let tanx = z
differentiate
sec²x.dx = dz
put this above ,
I = dz/( 1-3z²)
=dz/{ 1 -(√3z)²}
now use basic formula of integration ,
dx/( a² -x²) = 1/2a ln(a + x)/( a -x) + C
so, I = 1/2.1/√3 ln( 1+√3z )/( 1- √3z) + C
now , put z = tanx
so , I = 1/2√3.ln( 1+√3tanx)/( 1-√3tanx)
abhi178:
1/( 1- (√3z)²)
Answered by
2
Hope this helps..........
Attachments:
Similar questions